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Computer
Networks and
the Internet

Today’s Internet is arguably the largest engineered system ever created by mankind,
with hundreds of millions of connected computers, communication links, and
switches; with billions of users who connect via laptops, tablets, and smartphones;
and with an array of new Internet-connected “things” including game consoles, sur-
veillance systems, watches, eye glasses, thermostats, and cars. Given that the Inter-
net is so large and has so many diverse components and uses, is there any hope of
understanding how it works? Are there guiding principles and structure that can
provide a foundation for understanding such an amazingly large and complex sys-
tem? And if so, is it possible that it actually could be both interesting and fun to
learn about computer networks? Fortunately, the answer to all of these questions is
a resounding YES! Indeed, it’s our aim in this book to provide you with a modern
introduction to the dynamic field of computer networking, giving you the princi-
ples and practical insights you’ll need to understand not only today’s networks, but
tomorrow’s as well.

This first chapter presents a broad overview of computer networking and the
Internet. Our goal here is to paint a broad picture and set the context for the rest
of this book, to see the forest through the trees. We’ll cover a lot of ground in this
introductory chapter and discuss a lot of the pieces of a computer network, without
losing sight of the big picture.

We’ll structure our overview of computer networks in this chapter as follows.
After introducing some basic terminology and concepts, we’ll first examine the basic
hardware and software components that make up a network. We’ll begin at the net-
work’s edge and look at the end systems and network applications running in the
network. We’ll then explore the core of a computer network, examining the links
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and the switches that transport data, as well as the access networks and physical
media that connect end systems to the network core. We’ll learn that the Internet is
a network of networks, and we’ll learn how these networks connect with each other.

After having completed this overview of the edge and core of a computer net-
work, we’ll take the broader and more abstract view in the second half of this chap-
ter. We’ll examine delay, loss, and throughput of data in a computer network and
provide simple quantitative models for end-to-end throughput and delay: models
that take into account transmission, propagation, and queuing delays. We’ll then
introduce some of the key architectural principles in computer networking, namely,
protocol layering and service models. We’ll also learn that computer networks are
vulnerable to many different types of attacks; we’ll survey some of these attacks and
consider how computer networks can be made more secure. Finally, we’ll close this
chapter with a brief history of computer networking.

1.1 What Is the Internet?

In this book, we’ll use the public Internet, a specific computer network, as our prin-
cipal vehicle for discussing computer networks and their protocols. But what is the
Internet? There are a couple of ways to answer this question. First, we can describe
the nuts and bolts of the Internet, that is, the basic hardware and software components
that make up the Internet. Second, we can describe the Internet in terms of a network-
ing infrastructure that provides services to distributed applications. Let’s begin with
the nuts-and-bolts description, using Figure 1.1 to illustrate our discussion.

1.1.1 A Nuts-and-Bolts Description

The Internet is a computer network that interconnects billions of computing devices
throughout the world. Not too long ago, these computing devices were primarily
traditional desktop computers, Linux workstations, and so-called servers that store
and transmit information such as Web pages and e-mail messages. Increasingly,
however, users connect to the Internet with smartphones and tablets—today, close
to half of the world’s population are active mobile Internet users with the percentage
expected to increase to 75% by 2025 [Statista 2019]. Furthermore, nontraditional
Internet “things” such as TVs, gaming consoles, thermostats, home security systems,
home appliances, watches, eye glasses, cars, traffic control systems, and more are
being connected to the Internet. Indeed, the term computer network is beginning to
sound a bit dated, given the many nontraditional devices that are being hooked up to
the Internet. In Internet jargon, all of these devices are called hosts or end systems.
By some estimates, there were about 18 billion devices connected to the Internet in
2017, and the number will reach 28.5 billion by 2022 [Cisco VNI 2020].
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End systems are connected together by a network of communication links and
packet switches. We’ll see in Section 1.2 that there are many types of communica-
tion links, which are made up of different types of physical media, including coaxial
cable, copper wire, optical fiber, and radio spectrum. Different links can transmit
data at different rates, with the transmission rate of a link measured in bits/second.
When one end system has data to send to another end system, the sending end system
segments the data and adds header bytes to each segment. The resulting packages
of information, known as packets in the jargon of computer networks, are then sent
through the network to the destination end system, where they are reassembled into
the original data.

A packet switch takes a packet arriving on one of its incoming communication
links and forwards that packet on one of its outgoing communication links. Packet
switches come in many shapes and flavors, but the two most prominent types in
today’s Internet are routers and link-layer switches. Both types of switches forward
packets toward their ultimate destinations. Link-layer switches are typically used in
access networks, while routers are typically used in the network core. The sequence
of communication links and packet switches traversed by a packet from the send-
ing end system to the receiving end system is known as a route or path through
the network. Cisco predicts annual global IP traffic will reach nearly five zettabytes
(10*! bytes) by 2022 [Cisco VNI 2020].

Packet-switched networks (which transport packets) are in many ways
similar to transportation networks of highways, roads, and intersections (which
transport vehicles). Consider, for example, a factory that needs to move a large
amount of cargo to some destination warehouse located thousands of kilometers
away. At the factory, the cargo is segmented and loaded into a fleet of trucks.
Each of the trucks then independently travels through the network of highways,
roads, and intersections to the destination warehouse. At the destination ware-
house, the cargo is unloaded and grouped with the rest of the cargo arriving
from the same shipment. Thus, in many ways, packets are analogous to trucks,
communication links are analogous to highways and roads, packet switches are
analogous to intersections, and end systems are analogous to buildings. Just as
a truck takes a path through the transportation network, a packet takes a path
through a computer network.

End systems access the Internet through Internet Service Providers (ISPs),
including residential ISPs such as local cable or telephone companies; corpo-
rate ISPs; university ISPs; ISPs that provide WiFi access in airports, hotels, cof-
fee shops, and other public places; and cellular data ISPs, providing mobile access
to our smartphones and other devices. Each ISP is in itself a network of packet
switches and communication links. ISPs provide a variety of types of network access
to the end systems, including residential broadband access such as cable modem
or DSL, high-speed local area network access, and mobile wireless access. ISPs
also provide Internet access to content providers, connecting servers directly to
the Internet. The Internet is all about connecting end systems to each other, so the
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ISPs that provide access to end systems must also be interconnected. These lower-
tier ISPs are thus interconnected through national and international upper-tier ISPs
and these upper-tier ISPs are connected directly to each other. An upper-tier ISP
consists of high-speed routers interconnected with high-speed fiber-optic links. Each
ISP network, whether upper-tier or lower-tier, is managed independently, runs the
IP protocol (see below), and conforms to certain naming and address conventions.
We’ll examine ISPs and their interconnection more closely in Section 1.3.

End systems, packet switches, and other pieces of the Internet run protocols that
control the sending and receiving of information within the Internet. The Transmission
Control Protocol (TCP) and the Internet Protocol (IP) are two of the most impor-
tant protocols in the Internet. The IP protocol specifies the format of the packets
that are sent and received among routers and end systems. The Internet’s principal
protocols are collectively known as TCP/IP. We’ll begin looking into protocols in
this introductory chapter. But that’s just a start—much of this book is concerned with
networking protocols!

Given the importance of protocols to the Internet, it’s important that everyone
agree on what each and every protocol does, so that people can create systems and
products that interoperate. This is where standards come into play. Internet standards
are developed by the Internet Engineering Task Force IETF) [IETF 2020]. The IETF
standards documents are called requests for comments (RFCs). RFCs started out
as general requests for comments (hence the name) to resolve network and protocol
design problems that faced the precursor to the Internet [Allman 2011]. RFCs tend
to be quite technical and detailed. They define protocols such as TCP, IP, HTTP (for
the Web), and SMTP (for e-mail). There are currently nearly 9000 RFCs. Other bod-
ies also specify standards for network components, most notably for network links.
The IEEE 802 LAN Standards Committee [IEEE 802 2020], for example, specifies
the Ethernet and wireless WiFi standards.

1.1.2 A Services Description

Our discussion above has identified many of the pieces that make up the Internet.
But we can also describe the Internet from an entirely different angle—namely, as
an infrastructure that provides services to applications. In addition to traditional
applications such as e-mail and Web surfing, Internet applications include mobile
smartphone and tablet applications, including Internet messaging, mapping with
real-time road-traffic information, music streaming movie and television streaming,
online social media, video conferencing, multi-person games, and location-based
recommendation systems. The applications are said to be distributed applications,
since they involve multiple end systems that exchange data with each other. Impor-
tantly, Internet applications run on end systems—they do not run in the packet
switches in the network core. Although packet switches facilitate the exchange of
data among end systems, they are not concerned with the application that is the
source or sink of data.

5
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Let’s explore a little more what we mean by an infrastructure that provides
services to applications. To this end, suppose you have an exciting new idea for a dis-
tributed Internet application, one that may greatly benefit humanity or one that may
simply make you rich and famous. How might you go about transforming this idea
into an actual Internet application? Because applications run on end systems, you are
going to need to write programs that run on the end systems. You might, for example,
write your programs in Java, C, or Python. Now, because you are developing a dis-
tributed Internet application, the programs running on the different end systems will
need to send data to each other. And here we get to a central issue—one that leads
to the alternative way of describing the Internet as a platform for applications. How
does one program running on one end system instruct the Internet to deliver data to
another program running on another end system?

End systems attached to the Internet provide a socket interface that speci-
fies how a program running on one end system asks the Internet infrastructure to
deliver data to a specific destination program running on another end system. This
Internet socket interface is a set of rules that the sending program must follow so
that the Internet can deliver the data to the destination program. We’ll discuss the
Internet socket interface in detail in Chapter 2. For now, let’s draw upon a simple
analogy, one that we will frequently use in this book. Suppose Alice wants to send
a letter to Bob using the postal service. Alice, of course, can’t just write the letter
(the data) and drop the letter out her window. Instead, the postal service requires
that Alice put the letter in an envelope; write Bob’s full name, address, and zip
code in the center of the envelope; seal the envelope; put a stamp in the upper-
right-hand corner of the envelope; and finally, drop the envelope into an official
postal service mailbox. Thus, the postal service has its own “postal service inter-
face,” or set of rules, that Alice must follow to have the postal service deliver her
letter to Bob. In a similar manner, the Internet has a socket interface that the pro-
gram sending data must follow to have the Internet deliver the data to the program
that will receive the data.

The postal service, of course, provides more than one service to its custom-
ers. It provides express delivery, reception confirmation, ordinary use, and many
more services. In a similar manner, the Internet provides multiple services to its
applications. When you develop an Internet application, you too must choose one
of the Internet’s services for your application. We’ll describe the Internet’s ser-
vices in Chapter 2.

We have just given two descriptions of the Internet; one in terms of its hardware
and software components, the other in terms of an infrastructure for providing ser-
vices to distributed applications. But perhaps you are still confused as to what the
Internet is. What are packet switching and TCP/IP? What are routers? What kinds of
communication links are present in the Internet? What is a distributed application?
How can a thermostat or body scale be attached to the Internet? If you feel a bit over-
whelmed by all of this now, don’t worry—the purpose of this book is to introduce
you to both the nuts and bolts of the Internet and the principles that govern how and
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why it works. We’ll explain these important terms and questions in the following
sections and chapters.

1.1.3 What Is a Protocol?

Now that we’ve got a bit of a feel for what the Internet is, let’s consider another
important buzzword in computer networking: protocol. What is a protocol? What
does a protocol do?

A Human Analogy

It is probably easiest to understand the notion of a computer network protocol by
first considering some human analogies, since we humans execute protocols all of
the time. Consider what you do when you want to ask someone for the time of day.
A typical exchange is shown in Figure 1.2. Human protocol (or good manners, at

Time Time Time Time

Figure 1.2 ¢ A human protocol and a computer network protocol
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least) dictates that one first offer a greeting (the first “Hi” in Figure 1.2) to initiate
communication with someone else. The typical response to a “Hi” is a returned
“Hi” message. Implicitly, one then takes a cordial “Hi” response as an indication
that one can proceed and ask for the time of day. A different response to the initial
“Hi” (such as “Don’t bother me!” or “I don’t speak English,” or some unprintable
reply) might indicate an unwillingness or inability to communicate. In this case,
the human protocol would be not to ask for the time of day. Sometimes one gets no
response at all to a question, in which case one typically gives up asking that person
for the time. Note that in our human protocol, there are specific messages we send,
and specific actions we take in response to the received reply messages or other
events (such as no reply within some given amount of time). Clearly, transmitted
and received messages, and actions taken when these messages are sent or received
or other events occur, play a central role in a human protocol. If people run differ-
ent protocols (for example, if one person has manners but the other does not, or if
one understands the concept of time and the other does not) the protocols do not
interoperate and no useful work can be accomplished. The same is true in network-
ing—it takes two (or more) communicating entities running the same protocol in
order to accomplish a task.

Let’s consider a second human analogy. Suppose you’re in a college class (a
computer networking class, for example!). The teacher is droning on about protocols
and you’re confused. The teacher stops to ask, “Are there any questions?”” (a message
that is transmitted to, and received by, all students who are not sleeping). You raise
your hand (transmitting an implicit message to the teacher). Your teacher acknowl-
edges you with a smile, saying “Yes . . .” (a transmitted message encouraging you
to ask your question—teachers love to be asked questions), and you then ask your
question (that is, transmit your message to your teacher). Your teacher hears your
question (receives your question message) and answers (transmits a reply to you).
Once again, we see that the transmission and receipt of messages, and a set of con-
ventional actions taken when these messages are sent and received, are at the heart
of this question-and-answer protocol.

Network Protocols

A network protocol is similar to a human protocol, except that the entities exchang-
ing messages and taking actions are hardware or software components of some
device (for example, computer, smartphone, tablet, router, or other network-capable
device). All activity in the Internet that involves two or more communicating remote
entities is governed by a protocol. For example, hardware-implemented protocols in
two physically connected computers control the flow of bits on the “wire” between
the two network interface cards; congestion-control protocols in end systems control
the rate at which packets are transmitted between sender and receiver; protocols in
routers determine a packet’s path from source to destination. Protocols are running
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everywhere in the Internet, and consequently much of this book is about computer
network protocols.

As an example of a computer network protocol with which you are probably
familiar, consider what happens when you make a request to a Web server, that
is, when you type the URL of a Web page into your Web browser. The scenario is
illustrated in the right half of Figure 1.2. First, your computer will send a connec-
tion request message to the Web server and wait for a reply. The Web server will
eventually receive your connection request message and return a connection reply
message. Knowing that it is now OK to request the Web document, your computer
then sends the name of the Web page it wants to fetch from that Web server in a
GET message. Finally, the Web server returns the Web page (file) to your computer.

Given the human and networking examples above, the exchange of messages
and the actions taken when these messages are sent and received are the key defining
elements of a protocol:

A protocol defines the format and the order of messages exchanged between two
or more communicating entities, as well as the actions taken on the transmission
and/or receipt of a message or other event.

The Internet, and computer networks in general, make extensive use of pro-
tocols. Different protocols are used to accomplish different communication tasks.
As you read through this book, you will learn that some protocols are simple and
straightforward, while others are complex and intellectually deep. Mastering the
field of computer networking is equivalent to understanding the what, why, and how
of networking protocols.

1.2 The Network Edge

In the previous section, we presented a high-level overview of the Internet and
networking protocols. We are now going to delve a bit more deeply into the com-
ponents of the Internet. We begin in this section at the edge of the network and
look at the components with which we are most familiar—namely, the computers,
smartphones and other devices that we use on a daily basis. In the next section, we’ll
move from the network edge to the network core and examine switching and routing
in computer networks.

Recall from the previous section that in computer networking jargon, the com-
puters and other devices connected to the Internet are often referred to as end sys-
tems. They are referred to as end systems because they sit at the edge of the Internet,
as shown in Figure 1.3. The Internet’s end systems include desktop computers
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Figure 1.3 ¢ End-system interaction

(e.g., desktop PCs, Macs, and Linux boxes), servers (e.g., Web and e-mail servers),
and mobile devices (e.g., laptops, smartphones, and tablets). Furthermore, an
increasing number of non-traditional “things” are being attached to the Internet as
end systems (see the Case History feature).

End systems are also referred to as hosts because they host (that is, run) appli-
cation programs such as a Web browser program, a Web server program, an e-mail
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CASE HISTORY

DATA CENTERS AND CLOUD COMPUTING

Internet companies such as Google, Microsoft, Amazon, and Alibaba have built
massive data centers, each housing fens fo hundreds of thousands of hosts. These
data centers are not only connected to the Internet, as shown in Figure 1.1, but also
internally include complex computer networks that interconnect the datacenter’s hosts.
The data centers are the engines behind the Internet applications that we use on a
daily basis.

Broadly speaking, data centers serve three purposes, which we describe here in
the context of Amazon for concreteness. First, they serve Amazon e-commerce pages
to users, for example, pages describing products and purchase information. Second,
they serve as massively parallel computing infrastructures for Amazon-specific data
processing tasks. Third, they provide cloud computing to other companies. Indeed,
today a major trend in computing is for companies to use a cloud provider such as
Amazon to handle essentially all of their IT needs. For example, Airbnb and many
other Internetbased companies do not own and manage their own data centers but
instead run their entire Web-based services in the Amazon cloud, called Amazon
Web Services (AWS).

The worker bees in a data center are the hosts. They serve content (e.g., Web
pages and videos), store e-mails and documents, and collectively perform massively
distributed computations. The hosts in data centers, called blades and resembling
pizza boxes, are generally commodity hosts that include CPU, memory, and disk
storage. The hosts are stacked in racks, with each rack typically having 20 to
40 blades. The racks are then interconnected using sophisticated and evolving data
center network designs. Data center networks are discussed in greater detail in
Chapter 6.

client program, or an e-mail server program. Throughout this book we will use the
terms hosts and end systems interchangeably; that is, host = end system. Hosts
are sometimes further divided into two categories: clients and servers. Infor-
mally, clients tend to be desktops, laptops, smartphones, and so on, whereas
servers tend to be more powerful machines that store and distribute Web pages,
stream video, relay e-mail, and so on. Today, most of the servers from which we
receive search results, e-mail, Web pages, videos and mobile app content reside
in large data centers. For example, as of 2020, Google has 19 data centers on four
continents, collectively containing several million servers. Figure 1.3 includes
two such data centers, and the Case History sidebar describes data centers in
more detail.
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1.2.1 Access Networks

Having considered the applications and end systems at the “edge of the network,”
let’s next consider the access network—the network that physically connects an end

system to the first router (also known as the “edge router”) on a path from the end
system to any other distant end system. Figure 1.4 shows several types of access
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networks with thick, shaded lines and the settings (home, enterprise, and wide-area
mobile wireless) in which they are used.

Home Access: DSL, Cable, FTTH, and 5G Fixed Wireless

As of 2020, more than 80% of the households in Europe and the USA have Internet
access [Statista 2019]. Given this widespread use of home access networks let’s begin
our overview of access networks by considering how homes connect to the Internet.

Today, the two most prevalent types of broadband residential access are
digital subscriber line (DSL) and cable. A residence typically obtains DSL
Internet access from the same local telephone company (telco) that provides its
wired local phone access. Thus, when DSL is used, a customer’s telco is also
its ISP. As shown in Figure 1.5, each customer’s DSL modem uses the existing
telephone line exchange data with a digital subscriber line access multiplexer
(DSLAM) located in the telco’s local central office (CO). The home’s DSL
modem takes digital data and translates it to high-frequency tones for transmis-
sion over telephone wires to the CO; the analog signals from many such houses
are translated back into digital format at the DSLAM.

The residential telephone line carries both data and traditional telephone signals
simultaneously, which are encoded at different frequencies:

* A high-speed downstream channel, in the 50 kHz to 1 MHz band
* A medium-speed upstream channel, in the 4 kHz to 50 kHz band
* An ordinary two-way telephone channel, in the O to 4 kHz band

This approach makes the single DSL link appear as if there were three separate
links, so that a telephone call and an Internet connection can share the DSL link at

Home
Internet

Existing phone line:
0-4KHz phone; 4-50KHz

upstream data; 50KHz— ?
1MHz downstream data DSLAM

Splitter Telephone

Central
office

Home PC

Figure 1.5 ¢ DSL Internet access

13



14

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

the same time. (We’ll describe this technique of frequency-division multiplexing
in Section 1.3.1.) On the customer side, a splitter separates the data and telephone
signals arriving to the home and forwards the data signal to the DSL. modem. On the
telco side, in the CO, the DSLAM separates the data and phone signals and sends
the data into the Internet. Hundreds or even thousands of households connect to a
single DSLAM.

The DSL standards define multiple transmission rates, including downstream
transmission rates of 24 Mbs and 52 Mbs, and upstream rates of 3.5 Mbps and
16 Mbps; the newest standard provides for aggregate upstream plus downstream
rates of 1 Gbps [ITU 2014]. Because the downstream and upstream rates are dif-
ferent, the access is said to be asymmetric. The actual downstream and upstream
transmission rates achieved may be less than the rates noted above, as the DSL
provider may purposefully limit a residential rate when tiered service (different
rates, available at different prices) are offered. The maximum rate is also limited
by the distance between the home and the CO, the gauge of the twisted-pair line
and the degree of electrical interference. Engineers have expressly designed DSL
for short distances between the home and the CO; generally, if the residence is not
located within 5 to 10 miles of the CO, the residence must resort to an alternative
form of Internet access.

While DSL makes use of the telco’s existing local telephone infrastructure,
cable Internet access makes use of the cable television company’s existing cable
television infrastructure. A residence obtains cable Internet access from the same
company that provides its cable television. As illustrated in Figure 1.6, fiber optics

Coaxial cable

Hundreds
of homes

Hundreds

‘ Fiber Internet

of homes

™o

Fiber
node

Cable head end

Figure 1.6 + A hybrid fibercoaxial access network
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connect the cable head end to neighborhood-level junctions, from which tradi-
tional coaxial cable is then used to reach individual houses and apartments. Each
neighborhood junction typically supports 500 to 5,000 homes. Because both fiber
and coaxial cable are employed in this system, it is often referred to as hybrid fiber
coax (HFC).

Cable internet access requires special modems, called cable modems. As
with a DSL modem, the cable modem is typically an external device and con-
nects to the home PC through an Ethernet port. (We will discuss Ethernet in
great detail in Chapter 6.) At the cable head end, the cable modem termination
system (CMTS) serves a similar function as the DSL network’s DSLAM—
turning the analog signal sent from the cable modems in many downstream
homes back into digital format. Cable modems divide the HFC network into two
channels, a downstream and an upstream channel. As with DSL, access is typi-
cally asymmetric, with the downstream channel typically allocated a higher
transmission rate than the upstream channel. The DOCSIS 2.0 and 3.0 standards
define downstream bitrates of 40 Mbps and 1.2 Gbps, and upstream rates
of 30 Mbps and 100 Mbps, respectively. As in the case of DSL networks, the
maximum achievable rate may not be realized due to lower contracted data rates
or media impairments.

One important characteristic of cable Internet access is that it is a shared broad-
cast medium. In particular, every packet sent by the head end travels downstream on
every link to every home and every packet sent by a home travels on the upstream
channel to the head end. For this reason, if several users are simultaneously down-
loading a video file on the downstream channel, the actual rate at which each user
receives its video file will be significantly lower than the aggregate cable down-
stream rate. On the other hand, if there are only a few active users and they are all
Web surfing, then each of the users may actually receive Web pages at the full cable
downstream rate, because the users will rarely request a Web page at exactly the
same time. Because the upstream channel is also shared, a distributed multiple access
protocol is needed to coordinate transmissions and avoid collisions. (We’ll discuss
this collision issue in some detail in Chapter 6.)

Although DSL and cable networks currently represent the majority of residential
broadband access in the United States, an up-and-coming technology that provides
even higher speeds is fiber to the home (FTTH) [Fiber Broadband 2020]. As the
name suggests, the FTTH concept is simple—provide an optical fiber path from
the CO directly to the home. FTTH can potentially provide Internet access rates in
the gigabits per second range.

There are several competing technologies for optical distribution from the CO
to the homes. The simplest optical distribution network is called direct fiber, with
one fiber leaving the CO for each home. More commonly, each fiber leaving the
central office is actually shared by many homes; it is not until the fiber gets rela-
tively close to the homes that it is split into individual customer-specific fibers.
There are two competing optical-distribution network architectures that perform
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this splitting: active optical networks (AONs) and passive optical networks (PONs).
AON is essentially switched Ethernet, which is discussed in Chapter 6.

Here, we briefly discuss PON, which is used in Verizon’s FiOS service.
Figure 1.7 shows FTTH using the PON distribution architecture. Each home has
an optical network terminator (ONT), which is connected by dedicated optical
fiber to a neighborhood splitter. The splitter combines a number of homes (typi-
cally less than 100) onto a single, shared optical fiber, which connects to an optical
line terminator (OLT) in the telco’s CO. The OLT, providing conversion between
optical and electrical signals, connects to the Internet via a telco router. At home,
users connect a home router (typically a wireless router) to the ONT and access the
Internet via this home router. In the PON architecture, all packets sent from OLT to
the splitter are replicated at the splitter (similar to a cable head end).

In addition to DSL, Cable, and FTTH, 5G fixed wireless is beginning to be
deployed. 5G fixed wireless not only promises high-speed residential access, but
will do so without installing costly and failure-prone cabling from the telco’s
CO to the home. With 5G fixed wireless, using beam-forming technology, data
is sent wirelessly from a provider’s base station to the a modem in the home.
A WiFi wireless router is connected to the modem (possibly bundled together),
similar to how a WiFi wireless router is connected to a cable or DSL modem.
5G cellular networks are covered in Chapter 7.

Access in the Enterprise (and the Home): Ethernet and WiFi

On corporate and university campuses, and increasingly in home settings, a local
area network (LAN) is used to connect an end system to the edge router. Although
there are many types of LAN technologies, Ethernet is by far the most preva-
lent access technology in corporate, university, and home networks. As shown in
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Figure 1.8, Ethernet users use twisted-pair copper wire to connect to an Ethernet
switch, a technology discussed in detail in Chapter 6. The Ethernet switch, or a
network of such interconnected switches, is then in turn connected into the larger
Internet. With Ethernet access, users typically have 100 Mbps to tens of Gbps
access to the Ethernet switch, whereas servers may have 1 Gbps 10 Gbps access.

Increasingly, however, people are accessing the Internet wirelessly from lap-
tops, smartphones, tablets, and other “things”. In a wireless LAN setting, wireless
users transmit/receive packets to/from an access point that is connected into the
enterprise’s network (most likely using wired Ethernet), which in turn is connected
to the wired Internet. A wireless LAN user must typically be within a few tens of
meters of the access point. Wireless LAN access based on IEEE 802.11 technol-
ogy, more colloquially known as WiFi, is now just about everywhere—universities,
business offices, cafes, airports, homes, and even in airplanes. As discussed in detail
in Chapter 7, 802.11 today provides a shared transmission rate of up to more than
100 Mbps.

Even though Ethernet and WiFi access networks were initially deployed in
enterprise (corporate, university) settings, they are also common components of
home networks. Many homes combine broadband residential access (that is, cable
modems or DSL) with these inexpensive wireless LAN technologies to create pow-
erful home networks Figure 1.9 shows a typical home network. This home network
consists of a roaming laptop, multiple Internet-connected home appliances, as well
as a wired PC; a base station (the wireless access point), which communicates with
the wireless PC and other wireless devices in the home; and a home router that con-
nects the wireless access point, and any other wired home devices, to the Internet.
This network allows household members to have broadband access to the Internet
with one member roaming from the kitchen to the backyard to the bedrooms.
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Wide-Area Wireless Access: 3G and LTE 4G and 5G

Mobile devices such as iPhones and Android devices are being used to message, share
photos in social networks, make mobile payments, watch movies, stream music, and
much more while on the run. These devices employ the same wireless infrastructure
used for cellular telephony to send/receive packets through a base station that is oper-
ated by the cellular network provider. Unlike WiFi, a user need only be within a few
tens of kilometers (as opposed to a few tens of meters) of the base station.

Telecommunications companies have made enormous investments in so-called
fourth-generation (4G) wireless, which provides real-world download speeds of up to
60 Mbps. But even higher-speed wide-area access technologies—a fifth-generation
(5G) of wide-area wireless networks—are already being deployed. We’ll cover the
basic principles of wireless networks and mobility, as well as WiFi, 4G and 5G tech-
nologies (and more!) in Chapter 7.

1.2.2 Physical Media

In the previous subsection, we gave an overview of some of the most important
network access technologies in the Internet. As we described these technologies,
we also indicated the physical media used. For example, we said that HFC uses a
combination of fiber cable and coaxial cable. We said that DSL and Ethernet use
copper wire. And we said that mobile access networks use the radio spectrum. In this
subsection, we provide a brief overview of these and other transmission media that
are commonly used in the Internet.

In order to define what is meant by a physical medium, let us reflect on the
brief life of a bit. Consider a bit traveling from one end system, through a series
of links and routers, to another end system. This poor bit gets kicked around
and transmitted many, many times! The source end system first transmits the
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bit, and shortly thereafter the first router in the series receives the bit; the first
router then transmits the bit, and shortly thereafter the second router receives the
bit; and so on. Thus our bit, when traveling from source to destination, passes
through a series of transmitter-receiver pairs. For each transmitter-receiver pair,
the bit is sent by propagating electromagnetic waves or optical pulses across a
physical medium. The physical medium can take many shapes and forms and
does not have to be of the same type for each transmitter-receiver pair along
the path. Examples of physical media include twisted-pair copper wire, coaxial
cable, multimode fiber-optic cable, terrestrial radio spectrum, and satellite radio
spectrum. Physical media fall into two categories: guided media and unguided
media. With guided media, the waves are guided along a solid medium, such as
a fiber-optic cable, a twisted-pair copper wire, or a coaxial cable. With unguided
media, the waves propagate in the atmosphere and in outer space, such as in a
wireless LAN or a digital satellite channel.

But before we get into the characteristics of the various media types, let us say a
few words about their costs. The actual cost of the physical link (copper wire, fiber-
optic cable, and so on) is often relatively minor compared with other networking
costs. In particular, the labor cost associated with the installation of the physical link
can be orders of magnitude higher than the cost of the material. For this reason, many
builders install twisted pair, optical fiber, and coaxial cable in every room in a build-
ing. Even if only one medium is initially used, there is a good chance that another
medium could be used in the near future, and so money is saved by not having to lay
additional wires in the future.

Twisted-Pair Copper Wire

The least expensive and most commonly used guided transmission medium is
twisted-pair copper wire. For over a hundred years it has been used by telephone
networks. In fact, more than 99 percent of the wired connections from the telephone
handset to the local telephone switch use twisted-pair copper wire. Most of us have
seen twisted pair in our homes (or those of our parents or grandparents!) and work
environments. Twisted pair consists of two insulated copper wires, each about 1 mm
thick, arranged in a regular spiral pattern. The wires are twisted together to reduce the
electrical interference from similar pairs close by. Typically, a number of pairs are
bundled together in a cable by wrapping the pairs in a protective shield. A wire pair
constitutes a single communication link. Unshielded twisted pair (UTP) is com-
monly used for computer networks within a building, that is, for LANs. Data rates
for LANs using twisted pair today range from 10 Mbps to 10 Gbps. The data rates
that can be achieved depend on the thickness of the wire and the distance between
transmitter and receiver.

When fiber-optic technology emerged in the 1980s, many people dispar-
aged twisted pair because of its relatively low bit rates. Some people even felt
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that fiber-optic technology would completely replace twisted pair. But twisted
pair did not give up so easily. Modern twisted-pair technology, such as category
6a cable, can achieve data rates of 10 Gbps for distances up to a hundred meters.
In the end, twisted pair has emerged as the dominant solution for high-speed
LAN networking.

As discussed earlier, twisted pair is also commonly used for residential Inter-
net access. We saw that dial-up modem technology enables access at rates of up to
56 kbps over twisted pair. We also saw that DSL (digital subscriber line) technology
has enabled residential users to access the Internet at tens of Mbps over twisted pair
(when users live close to the ISP’s central office).

Coaxial Cable

Like twisted pair, coaxial cable consists of two copper conductors, but the two con-
ductors are concentric rather than parallel. With this construction and special insula-
tion and shielding, coaxial cable can achieve high data transmission rates. Coaxial
cable is quite common in cable television systems. As we saw earlier, cable televi-
sion systems have recently been coupled with cable modems to provide residential
users with Internet access at rates of hundreds of Mbps. In cable television and cable
Internet access, the transmitter shifts the digital signal to a specific frequency band,
and the resulting analog signal is sent from the transmitter to one or more receivers.
Coaxial cable can be used as a guided shared medium. Specifically, a number of
end systems can be connected directly to the cable, with each of the end systems
receiving whatever is sent by the other end systems.

Fiber Optics

An optical fiber is a thin, flexible medium that conducts pulses of light, with each
pulse representing a bit. A single optical fiber can support tremendous bit rates, up
to tens or even hundreds of gigabits per second. They are immune to electromagnetic
interference, have very low signal attenuation up to 100 kilometers, and are very hard
to tap. These characteristics have made fiber optics the preferred long-haul guided
transmission media, particularly for overseas links. Many of the long-distance tele-
phone networks in the United States and elsewhere now use fiber optics exclusively.
Fiber optics is also prevalent in the backbone of the Internet. However, the high cost
of optical devices—such as transmitters, receivers, and switches—has hindered their
deployment for short-haul transport, such as in a LAN or into the home in a resi-
dential access network. The Optical Carrier (OC) standard link speeds range from
51.8 Mbps to 39.8 Gbps; these specifications are often referred to as OC-n, where
the link speed equals n X 51.8 Mbps. Standards in use today include OC-1, OC-3,
0OC-12, OC-24, OC-48, OC-96, OC-192, OC-768.
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Terrestrial Radio Channels

Radio channels carry signals in the electromagnetic spectrum. They are an attrac-
tive medium because they require no physical wire to be installed, can penetrate
walls, provide connectivity to a mobile user, and can potentially carry a signal
for long distances. The characteristics of a radio channel depend significantly
on the propagation environment and the distance over which a signal is to be
carried. Environmental considerations determine path loss and shadow fad-
ing (which decrease the signal strength as the signal travels over a distance and
around/through obstructing objects), multipath fading (due to signal reflection off
of interfering objects), and interference (due to other transmissions and electro-
magnetic signals).

Terrestrial radio channels can be broadly classified into three groups: those that
operate over very short distance (e.g., with one or two meters); those that operate in
local areas, typically spanning from ten to a few hundred meters; and those that oper-
ate in the wide area, spanning tens of kilometers. Personal devices such as wireless
headsets, keyboards, and medical devices operate over short distances; the wireless
LAN technologies described in Section 1.2.1 use local-area radio channels; the cel-
lular access technologies use wide-area radio channels. We’ll discuss radio channels
in detail in Chapter 7.

Satellite Radio Channels

A communication satellite links two or more Earth-based microwave transmitter/
receivers, known as ground stations. The satellite receives transmissions on
one frequency band, regenerates the signal using a repeater (discussed below),
and transmits the signal on another frequency. Two types of satellites are used
in communications: geostationary satellites and low-earth orbiting (LEO)
satellites.

Geostationary satellites permanently remain above the same spot on Earth.
This stationary presence is achieved by placing the satellite in orbit at 36,000 kilo-
meters above Earth’s surface. This huge distance from ground station through
satellite back to ground station introduces a substantial signal propagation delay
of 280 milliseconds. Nevertheless, satellite links, which can operate at speeds of
hundreds of Mbps, are often used in areas without access to DSL or cable-based
Internet access.

LEO satellites are placed much closer to Earth and do not remain permanently
above one spot on Earth. They rotate around Earth (just as the Moon does) and may
communicate with each other, as well as with ground stations. To provide continuous
coverage to an area, many satellites need to be placed in orbit. There are currently
many low-altitude communication systems in development. LEO satellite technology
may be used for Internet access sometime in the future.
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1.3 The Network Core

Having examined the Internet’s edge, let us now delve more deeply inside the
network core—the mesh of packet switches and links that interconnects the
Internet’s end systems. Figure 1.10 highlights the network core with thick,
shaded lines.
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Figure 1.10 ¢ The network core
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1.3.1 Packet Switching

In a network application, end systems exchange messages with each other. Mes-
sages can contain anything the application designer wants. Messages may perform
a control function (for example, the “Hi” messages in our handshaking example in
Figure 1.2) or can contain data, such as an e-mail message, a JPEG image, or an
MP3 audio file. To send a message from a source end system to a destination end
system, the source breaks long messages into smaller chunks of data known as pack-
ets. Between source and destination, each packet travels through communication
links and packet switches (for which there are two predominant types, routers and
link-layer switches). Packets are transmitted over each communication link at a rate
equal to the full transmission rate of the link. So, if a source end system or a packet
switch is sending a packet of L bits over a link with transmission rate R bits/sec, then
the time to transmit the packet is L/R seconds.

Store-and-Forward Transmission

Most packet switches use store-and-forward transmission at the inputs to the
links. Store-and-forward transmission means that the packet switch must receive
the entire packet before it can begin to transmit the first bit of the packet onto the
outbound link. To explore store-and-forward transmission in more detail, consider
a simple network consisting of two end systems connected by a single router, as
shown in Figure 1.11. A router will typically have many incident links, since its
job is to switch an incoming packet onto an outgoing link; in this simple example,
the router has the rather simple task of transferring a packet from one (input) link
to the only other attached link. In this example, the source has three packets, each
consisting of L bits, to send to the destination. At the snapshot of time shown in
Figure 1.11, the source has transmitted some of packet 1, and the front of packet 1
has already arrived at the router. Because the router employs store-and-forwarding,
at this instant of time, the router cannot transmit the bits it has received; instead it
must first buffer (i.e., “store”) the packet’s bits. Only after the router has received
all of the packet’s bits can it begin to transmit (i.e., “forward”) the packet onto the
outbound link. To gain some insight into store-and-forward transmission, let’s now
calculate the amount of time that elapses from when the source begins to send the
packet until the destination has received the entire packet. (Here we will ignore
propagation delay—the time it takes for the bits to travel across the wire at near
the speed of light—which will be discussed in Section 1.4.) The source begins to
transmit at time 0; at time L/R seconds, the source has transmitted the entire packet,
and the entire packet has been received and stored at the router (since there is no
propagation delay). At time L/R seconds, since the router has just received the entire
packet, it can begin to transmit the packet onto the outbound link towards the des-
tination; at time 2L/R, the router has transmitted the entire packet, and the entire
packet has been received by the destination. Thus, the total delay is 2L/R. If the
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Figure 1.11 ¢ Store-and-forward packet switching

switch instead forwarded bits as soon as they arrive (without first receiving the entire
packet), then the total delay would be L/R since bits are not held up at the router.
But, as we will discuss in Section 1.4, routers need to receive, store, and process the
entire packet before forwarding.

Now let’s calculate the amount of time that elapses from when the source begins
to send the first packet until the destination has received all three packets. As before,
at time L/R, the router begins to forward the first packet. But also at time L/R the
source will begin to send the second packet, since it has just finished sending the
entire first packet. Thus, at time 2L/R, the destination has received the first packet
and the router has received the second packet. Similarly, at time 3L/R, the destina-
tion has received the first two packets and the router has received the third packet.
Finally, at time 4L/R the destination has received all three packets!

Let’s now consider the general case of sending one packet from source to des-
tination over a path consisting of N links each of rate R (thus, there are N-1 routers
between source and destination). Applying the same logic as above, we see that the
end-to-end delay is:

L
d = N— 1.1
end-to-end R ( )

You may now want to try to determine what the delay would be for P packets sent
over a series of N links.

Queuing Delays and Packet Loss

Each packet switch has multiple links attached to it. For each attached link, the
packet switch has an output buffer (also called an output queue), which stores
packets that the router is about to send into that link. The output buffers play a key
role in packet switching. If an arriving packet needs to be transmitted onto a link but
finds the link busy with the transmission of another packet, the arriving packet must
wait in the output buffer. Thus, in addition to the store-and-forward delays, packets
suffer output buffer queuing delays. These delays are variable and depend on the
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Figure 1.12 ¢ Packet switching

level of congestion in the network. Since the amount of buffer space is finite, an
arriving packet may find that the buffer is completely full with other packets waiting
for transmission. In this case, packet loss will occur—either the arriving packet or
one of the already-queued packets will be dropped.

Figure 1.12 illustrates a simple packet-switched network. As in Figure 1.11,
packets are represented by three-dimensional slabs. The width of a slab represents
the number of bits in the packet. In this figure, all packets have the same width and
hence the same length. Suppose Hosts A and B are sending packets to Host E. Hosts
A and B first send their packets along 100 Mbps Ethernet links to the first router.
The router then directs these packets to the 15 Mbps link. If, during a short interval
of time, the arrival rate of packets to the router (when converted to bits per second)
exceeds 15 Mbps, congestion will occur at the router as packets queue in the link’s
output buffer before being transmitted onto the link. For example, if Host A and B
each send a burst of five packets back-to-back at the same time, then most of these
packets will spend some time waiting in the queue. The situation is, in fact, entirely
analogous to many common-day situations—for example, when we wait in line for a
bank teller or wait in front of a tollbooth. We’ll examine this queuing delay in more
detail in Section 1.4.

Forwarding Tables and Routing Protocols

Earlier, we said that a router takes a packet arriving on one of its attached com-
munication links and forwards that packet onto another one of its attached
communication links. But how does the router determine which link it should
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forward the packet onto? Packet forwarding is actually done in different ways in
different types of computer networks. Here, we briefly describe how it is done
in the Internet.

In the Internet, every end system has an address called an IP address. When
a source end system wants to send a packet to a destination end system, the
source includes the destination’s IP address in the packet’s header. As with postal
addresses, this address has a hierarchical structure. When a packet arrives at a router
in the network, the router examines a portion of the packet’s destination address
and forwards the packet to an adjacent router. More specifically, each router has
a forwarding table that maps destination addresses (or portions of the destination
addresses) to that router’s outbound links. When a packet arrives at a router, the
router examines the address and searches its forwarding table, using this destination
address, to find the appropriate outbound link. The router then directs the packet to
this outbound link.

The end-to-end routing process is analogous to a car driver who does not
use maps but instead prefers to ask for directions. For example, suppose Joe is
driving from Philadelphia to 156 Lakeside Drive in Orlando, Florida. Joe first
drives to his neighborhood gas station and asks how to get to 156 Lakeside Drive
in Orlando, Florida. The gas station attendant extracts the Florida portion of the
address and tells Joe that he needs to get onto the interstate highway I-95 South,
which has an entrance just next to the gas station. He also tells Joe that once he
enters Florida, he should ask someone else there. Joe then takes I-95 South until he
gets to Jacksonville, Florida, at which point he asks another gas station attendant
for directions. The attendant extracts the Orlando portion of the address and tells
Joe that he should continue on I-95 to Daytona Beach and then ask someone else.
In Daytona Beach, another gas station attendant also extracts the Orlando portion
of the address and tells Joe that he should take I-4 directly to Orlando. Joe takes
[-4 and gets off at the Orlando exit. Joe goes to another gas station attendant, and
this time the attendant extracts the Lakeside Drive portion of the address and tells
Joe the road he must follow to get to Lakeside Drive. Once Joe reaches Lakeside
Drive, he asks a kid on a bicycle how to get to his destination. The kid extracts the
156 portion of the address and points to the house. Joe finally reaches his ultimate
destination. In the above analogy, the gas station attendants and kids on bicycles
are analogous to routers.

We just learned that a router uses a packet’s destination address to index a for-
warding table and determine the appropriate outbound link. But this statement begs
yet another question: How do forwarding tables get set? Are they configured by hand
in each and every router, or does the Internet use a more automated procedure? This
issue will be studied in depth in Chapter 5. But to whet your appetite here, we’ll note
now that the Internet has a number of special routing protocols that are used to auto-
matically set the forwarding tables. A routing protocol may, for example, determine
the shortest path from each router to each destination and use the shortest path results
to configure the forwarding tables in the routers.



1.3 e THE NETWORK CORE

1.3.2 Circuit Switching

There are two fundamental approaches to moving data through a network of links
and switches: circuit switching and packet switching. Having covered packet-
switched networks in the previous subsection, we now turn our attention to circuit-
switched networks.

In circuit-switched networks, the resources needed along a path (buffers, link
transmission rate) to provide for communication between the end systems are
reserved for the duration of the communication session between the end systems.
In packet-switched networks, these resources are not reserved; a session’s messages
use the resources on demand and, as a consequence, may have to wait (that is, queue)
for access to a communication link. As a simple analogy, consider two restaurants,
one that requires reservations and another that neither requires reservations nor
accepts them. For the restaurant that requires reservations, we have to go through
the hassle of calling before we leave home. But when we arrive at the restaurant we
can, in principle, immediately be seated and order our meal. For the restaurant that
does not require reservations, we don’t need to bother to reserve a table. But when
we arrive at the restaurant, we may have to wait for a table before we can be seated.

Traditional telephone networks are examples of circuit-switched networks.
Consider what happens when one person wants to send information (voice or facsimile)
to another over a telephone network. Before the sender can send the information,
the network must establish a connection between the sender and the receiver. This
is a bona fide connection for which the switches on the path between the sender and
receiver maintain connection state for that connection. In the jargon of telephony,
this connection is called a circuit. When the network establishes the circuit, it also
reserves a constant transmission rate in the network’s links (representing a fraction
of each link’s transmission capacity) for the duration of the connection. Since a given
transmission rate has been reserved for this sender-to-receiver connection, the sender
can transfer the data to the receiver at the guaranteed constant rate.

Figure 1.13 illustrates a circuit-switched network. In this network, the four
circuit switches are interconnected by four links. Each of these links has four cir-
cuits, so that each link can support four simultaneous connections. The hosts (for
example, PCs and workstations) are each directly connected to one of the switches.
When two hosts want to communicate, the network establishes a dedicated end-
to-end connection between the two hosts. Thus, in order for Host A to communi-
cate with Host B, the network must first reserve one circuit on each of two links.
In this example, the dedicated end-to-end connection uses the second circuit in
the first link and the fourth circuit in the second link. Because each link has four
circuits, for each link used by the end-to-end connection, the connection gets one
fourth of the link’s total transmission capacity for the duration of the connection.
Thus, for example, if each link between adjacent switches has a transmission rate of
1 Mbps, then each end-to-end circuit-switch connection gets 250 kbps of dedicated
transmission rate.
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Figure 1.13 ¢ A simple circuit-switched network consisting of four switches
and four links

In contrast, consider what happens when one host wants to send a packet to
another host over a packet-switched network, such as the Internet. As with circuit
switching, the packet is transmitted over a series of communication links. But dif-
ferent from circuit switching, the packet is sent into the network without reserving
any link resources whatsoever. If one of the links is congested because other packets
need to be transmitted over the link at the same time, then the packet will have to
wait in a buffer at the sending side of the transmission link and suffer a delay. The
Internet makes its best effort to deliver packets in a timely manner, but it does not
make any guarantees.

Multiplexing in Circuit-Switched Networks

A circuit in a link is implemented with either frequency-division multiplexing
(FDM) or time-division multiplexing (TDM). With FDM, the frequency spectrum
of a link is divided up among the connections established across the link. Specifi-
cally, the link dedicates a frequency band to each connection for the duration of the
connection. In telephone networks, this frequency band typically has a width of
4 kHz (that is, 4,000 hertz or 4,000 cycles per second). The width of the band is
called, not surprisingly, the bandwidth. FM radio stations also use FDM to share
the frequency spectrum between 88 MHz and 108 MHz, with each station being
allocated a specific frequency band.

For a TDM link, time is divided into frames of fixed duration, and each frame is
divided into a fixed number of time slots. When the network establishes a connection
across a link, the network dedicates one time slot in every frame to this connection.
These slots are dedicated for the sole use of that connection, with one time slot avail-
able for use (in every frame) to transmit the connection’s data.
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Figure 1.14 illustrates FDM and TDM for a specific network link supporting
up to four circuits. For FDM, the frequency domain is segmented into four bands,
each of bandwidth 4 kHz. For TDM, the time domain is segmented into frames, with
four time slots in each frame; each circuit is assigned the same dedicated slot in the
revolving TDM frames. For TDM, the transmission rate of a circuit is equal to the
frame rate multiplied by the number of bits in a slot. For example, if the link trans-
mits 8,000 frames per second and each slot consists of 8 bits, then the transmission
rate of each circuit is 64 kbps.

Proponents of packet switching have always argued that circuit switching is waste-
ful because the dedicated circuits are idle during silent periods. For example, when one
person in a telephone call stops talking, the idle network resources (frequency bands or
time slots in the links along the connection’s route) cannot be used by other ongoing
connections. As another example of how these resources can be underutilized, consider
aradiologist who uses a circuit-switched network to remotely access a series of x-rays.
The radiologist sets up a connection, requests an image, contemplates the image, and
then requests a new image. Network resources are allocated to the connection but are
not used (i.e., are wasted) during the radiologist’s contemplation periods. Proponents
of packet switching also enjoy pointing out that establishing end-to-end circuits and
reserving end-to-end transmission capacity is complicated and requires complex sign-
aling software to coordinate the operation of the switches along the end-to-end path.
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Before we finish our discussion of circuit switching, let’s work through a numer-
ical example that should shed further insight on the topic. Let us consider how long
it takes to send a file of 640,000 bits from Host A to Host B over a circuit-switched
network. Suppose that all links in the network use TDM with 24 slots and have a bit
rate of 1.536 Mbps. Also suppose that it takes 500 msec to establish an end-to-end
circuit before Host A can begin to transmit the file. How long does it take to send
the file? Each circuit has a transmission rate of (1.536 Mbps)/24 = 64 kbps, so it
takes (640,000 bits)/(64 kbps) = 10 seconds to transmit the file. To this 10 seconds
we add the circuit establishment time, giving 10.5 seconds to send the file. Note
that the transmission time is independent of the number of links: The transmission
time would be 10 seconds if the end-to-end circuit passed through one link or a
hundred links. (The actual end-to-end delay also includes a propagation delay; see
Section 1.4.)

Packet Switching Versus Circuit Switching

Having described circuit switching and packet switching, let us compare the two.
Critics of packet switching have often argued that packet switching is not suita-
ble for real-time services (for example, telephone calls and video conference calls)
because of its variable and unpredictable end-to-end delays (due primarily to vari-
able and unpredictable queuing delays). Proponents of packet switching argue that
(1) it offers better sharing of transmission capacity than circuit switching and (2) it
is simpler, more efficient, and less costly to implement than circuit switching. An
interesting discussion of packet switching versus circuit switching is [Molinero-
Fernandez 2002]. Generally speaking, people who do not like to hassle with restaurant
reservations prefer packet switching to circuit switching.

Why is packet switching more efficient? Let’s look at a simple example. Sup-
pose users share a 1 Mbps link. Also suppose that each user alternates between peri-
ods of activity, when a user generates data at a constant rate of 100 kbps, and periods
of inactivity, when a user generates no data. Suppose further that a user is active only
10 percent of the time (and is idly drinking coffee during the remaining 90 percent
of the time). With circuit switching, 100 kbps must be reserved for each user at all
times. For example, with circuit-switched TDM, if a one-second frame is divided
into 10 time slots of 100 ms each, then each user would be allocated one time slot
per frame.

Thus, the circuit-switched link can support only 10 (= 1 Mbps/100 kbps) simul-
taneous users. With packet switching, the probability that a specific user is active
is 0.1 (that is, 10 percent). If there are 35 users, the probability that there are 11 or
more simultaneously active users is approximately 0.0004. (Homework Problem P8
outlines how this probability is obtained.) When there are 10 or fewer simultane-
ously active users (which happens with probability 0.9996), the aggregate arrival
rate of data is less than or equal to 1 Mbps, the output rate of the link. Thus, when
there are 10 or fewer active users, users’ packets flow through the link essentially
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without delay, as is the case with circuit switching. When there are more than 10
simultaneously active users, then the aggregate arrival rate of packets exceeds the
output capacity of the link, and the output queue will begin to grow. (It continues to
grow until the aggregate input rate falls back below 1 Mbps, at which point the queue
will begin to diminish in length.) Because the probability of having more than 10
simultaneously active users is minuscule in this example, packet switching provides
essentially the same performance as circuit switching, but does so while allowing for
more than three times the number of users.

Let’s now consider a second simple example. Suppose there are 10 users and
that one user suddenly generates one thousand 1,000-bit packets, while other users
remain quiescent and do not generate packets. Under TDM circuit switching with 10
slots per frame and each slot consisting of 1,000 bits, the active user can only use its
one time slot per frame to transmit data, while the remaining nine time slots in each
frame remain idle. It will be 10 seconds before all of the active user’s one million
bits of data has been transmitted. In the case of packet switching, the active user can
continuously send its packets at the full link rate of 1 Mbps, since there are no other
users generating packets that need to be multiplexed with the active user’s packets.
In this case, all of the active user’s data will be transmitted within 1 second.

The above examples illustrate two ways in which the performance of packet
switching can be superior to that of circuit switching. They also highlight the cru-
cial difference between the two forms of sharing a link’s transmission rate among
multiple data streams. Circuit switching pre-allocates use of the transmission link
regardless of demand, with allocated but unneeded link time going unused. Packet
switching on the other hand allocates link use on demand. Link transmission capacity
will be shared on a packet-by-packet basis only among those users who have packets
that need to be transmitted over the link.

Although packet switching and circuit switching are both prevalent in today’s
telecommunication networks, the trend has certainly been in the direction of packet
switching. Even many of today’s circuit-switched telephone networks are slowly
migrating toward packet switching. In particular, telephone networks often use
packet switching for the expensive overseas portion of a telephone call.

1.3.3 A Network of Networks

We saw earlier that end systems (PCs, smartphones, Web servers, mail servers, and
so on) connect into the Internet via an access ISP. The access ISP can provide either
wired or wireless connectivity, using an array of access technologies including DSL,
cable, FTTH, Wi-Fi, and cellular. Note that the access ISP does not have to be a
telco or a cable company; instead it can be, for example, a university (providing
Internet access to students, staff, and faculty), or a company (providing access for
its employees). But connecting end users and content providers into an access ISP is
only a small piece of solving the puzzle of connecting the billions of end systems that
make up the Internet. To complete this puzzle, the access ISPs themselves must be
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interconnected. This is done by creating a network of networks—understanding this
phrase is the key to understanding the Internet.

Over the years, the network of networks that forms the Internet has evolved into
a very complex structure. Much of this evolution is driven by economics and national
policy, rather than by performance considerations. In order to understand today’s
Internet network structure, let’s incrementally build a series of network structures,
with each new structure being a better approximation of the complex Internet that we
have today. Recall that the overarching goal is to interconnect the access ISPs so that
all end systems can send packets to each other. One naive approach would be to have
each access ISP directly connect with every other access ISP. Such a mesh design is,
of course, much too costly for the access ISPs, as it would require each access ISP
to have a separate communication link to each of the hundreds of thousands of other
access ISPs all over the world.

Our first network structure, Network Structure 1, interconnects all of the access
ISPs with a single global transit ISP. Our (imaginary) global transit ISP is a network
of routers and communication links that not only spans the globe, but also has at least
one router near each of the hundreds of thousands of access ISPs. Of course, it would
be very costly for the global ISP to build such an extensive network. To be profitable,
it would naturally charge each of the access ISPs for connectivity, with the pricing
reflecting (but not necessarily directly proportional to) the amount of traffic an access
ISP exchanges with the global ISP. Since the access ISP pays the global transit ISP, the
access ISP is said to be a customer and the global transit ISP is said to be a provider.

Now if some company builds and operates a global transit ISP that is profit-
able, then it is natural for other companies to build their own global transit ISPs
and compete with the original global transit ISP. This leads to Network Structure 2,
which consists of the hundreds of thousands of access ISPs and multiple global
transit ISPs. The access ISPs certainly prefer Network Structure 2 over Network
Structure 1 since they can now choose among the competing global transit providers
as a function of their pricing and services. Note, however, that the global transit ISPs
themselves must interconnect: Otherwise access ISPs connected to one of the global
transit providers would not be able to communicate with access ISPs connected to the
other global transit providers.

Network Structure 2, just described, is a two-tier hierarchy with global transit
providers residing at the top tier and access ISPs at the bottom tier. This assumes
that global transit ISPs are not only capable of getting close to each and every access
ISP, but also find it economically desirable to do so. In reality, although some ISPs
do have impressive global coverage and do directly connect with many access ISPs,
no ISP has presence in each and every city in the world. Instead, in any given region,
there may be a regional ISP to which the access ISPs in the region connect. Each
regional ISP then connects to tier-1 ISPs. Tier-1 ISPs are similar to our (imaginary)
global transit ISP; but tier-1 ISPs, which actually do exist, do not have a presence
in every city in the world. There are approximately a dozen tier-1 ISPs, including
Level 3 Communications, AT&T, Sprint, and NTT. Interestingly, no group officially
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sanctions tier-1 status; as the saying goes—if you have to ask if you’re a member of
a group, you’re probably not.

Returning to this network of networks, not only are there multiple competing
tier-1 ISPs, there may be multiple competing regional ISPs in a region. In such a
hierarchy, each access ISP pays the regional ISP to which it connects, and each
regional ISP pays the tier-1 ISP to which it connects. (An access ISP can also connect
directly to a tier-1 ISP, in which case it pays the tier-1 ISP). Thus, there is customer-
provider relationship at each level of the hierarchy. Note that the tier-1 ISPs do not
pay anyone as they are at the top of the hierarchy. To further complicate matters, in
some regions, there may be a larger regional ISP (possibly spanning an entire coun-
try) to which the smaller regional ISPs in that region connect; the larger regional
ISP then connects to a tier-1 ISP. For example, in China, there are access ISPs in
each city, which connect to provincial ISPs, which in turn connect to national ISPs,
which finally connect to tier-1 ISPs [Tian 2012]. We refer to this multi-tier hierarchy,
which is still only a crude approximation of today’s Internet, as Network Structure 3.

To build a network that more closely resembles today’s Internet, we must add
points of presence (PoPs), multi-homing, peering, and Internet exchange points
(IXPs) to the hierarchical Network Structure 3. PoPs exist in all levels of the hier-
archy, except for the bottom (access ISP) level. A PoP is simply a group of one or
more routers (at the same location) in the provider’s network where customer ISPs
can connect into the provider ISP. For a customer network to connect to a provider’s
PoP, it can lease a high-speed link from a third-party telecommunications provider
to directly connect one of its routers to a router at the PoP. Any ISP (except for tier-1
ISPs) may choose to multi-home, that is, to connect to two or more provider ISPs. So,
for example, an access ISP may multi-home with two regional ISPs, or it may multi-
home with two regional ISPs and also with a tier-1 ISP. Similarly, a regional ISP may
multi-home with multiple tier-1 ISPs. When an ISP multi-homes, it can continue to
send and receive packets into the Internet even if one of its providers has a failure.

As we just learned, customer ISPs pay their provider ISPs to obtain global Inter-
net interconnectivity. The amount that a customer ISP pays a provider ISP reflects
the amount of traffic it exchanges with the provider. To reduce these costs, a pair
of nearby ISPs at the same level of the hierarchy can peer, that is, they can directly
connect their networks together so that all the traffic between them passes over the
direct connection rather than through upstream intermediaries. When two ISPs peer,
it is typically settlement-free, that is, neither ISP pays the other. As noted earlier,
tier-1 ISPs also peer with one another, settlement-free. For a readable discussion of
peering and customer-provider relationships, see [Van der Berg 2008]. Along these
same lines, a third-party company can create an Internet Exchange Point (IXP),
which is a meeting point where multiple ISPs can peer together. An IXP is typically
in a stand-alone building with its own switches [Ager 2012]. There are over 600 IXPs
in the Internet today [PeeringDB 2020]. We refer to this ecosystem—consisting of
access ISPs, regional ISPs, tier-1 ISPs, PoPs, multi-homing, peering, and IXPs—as
Network Structure 4.
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We now finally arrive at Network Structure 5, which describes today’s Internet.
Network Structure 5, illustrated in Figure 1.15, builds on top of Network Structure 4
by adding content-provider networks. Google is currently one of the leading exam-
ples of such a content-provider network. As of this writing, it Google has 19 major data
centers distributed across North America, Europe, Asia, South America, and Australia
with each data center having tens or hundreds of thousands of servers. Additionally,
Google has smaller data centers, each with a few hundred servers; these smaller data
centers are often located within IXPs. The Google data centers are all interconnected
via Google’s private TCP/IP network, which spans the entire globe but is neverthe-
less separate from the public Internet. Importantly, the Google private network only
carries traffic to/from Google servers. As shown in Figure 1.15, the Google private
network attempts to “bypass” the upper tiers of the Internet by peering (settlement
free) with lower-tier ISPs, either by directly connecting with them or by connecting
with them at IXPs [Labovitz 2010]. However, because many access ISPs can still only
be reached by transiting through tier-1 networks, the Google network also connects
to tier-1 ISPs, and pays those ISPs for the traffic it exchanges with them. By creating
its own network, a content provider not only reduces its payments to upper-tier ISPs,
but also has greater control of how its services are ultimately delivered to end users.
Google’s network infrastructure is described in greater detail in Section 2.6.

In summary, today’s Internet—a network of networks—is complex, consisting
of a dozen or so tier-1 ISPs and hundreds of thousands of lower-tier ISPs. The ISPs
are diverse in their coverage, with some spanning multiple continents and oceans,
and others limited to narrow geographic regions. The lower-tier ISPs connect to the
higher-tier ISPs, and the higher-tier ISPs interconnect with one another. Users and
content providers are customers of lower-tier ISPs, and lower-tier ISPs are customers
of higher-tier ISPs. In recent years, major content providers have also created their
own networks and connect directly into lower-tier ISPs where possible.
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Figure 1.15 + Inferconnection of ISPs
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1.4 Delay, Loss, and Throughput
in Packet-Switched Networks

Back in Section 1.1 we said that the Internet can be viewed as an infrastructure that
provides services to distributed applications running on end systems. Ideally, we
would like Internet services to be able to move as much data as we want between any
two end systems, instantaneously, without any loss of data. Alas, this is a lofty goal,
one that is unachievable in reality. Instead, computer networks necessarily constrain
throughput (the amount of data per second that can be transferred) between end sys-
tems, introduce delays between end systems, and can actually lose packets. On one
hand, it is unfortunate that the physical laws of reality introduce delay and loss as
well as constrain throughput. On the other hand, because computer networks have
these problems, there are many fascinating issues surrounding how to deal with the
problems—more than enough issues to fill a course on computer networking and to
motivate thousands of PhD theses! In this section, we’ll begin to examine and quan-
tify delay, loss, and throughput in computer networks.

1.4.1 Overview of Delay in Packet-Switched Networks

Recall that a packet starts in a host (the source), passes through a series of routers,
and ends its journey in another host (the destination). As a packet travels from one
node (host or router) to the subsequent node (host or router) along this path, the
packet suffers from several types of delays at each node along the path. The most
important of these delays are the nodal processing delay, queuing delay, transmis-
sion delay, and propagation delay; together, these delays accumulate to give a total
nodal delay. The performance of many Internet applications—such as search, Web
browsing, e-mail, maps, instant messaging, and voice-over-IP—are greatly affected
by network delays. In order to acquire a deep understanding of packet switching and
computer networks, we must understand the nature and importance of these delays.

Types of Delay

Let’s explore these delays in the context of Figure 1.16. As part of its end-to-end
route between source and destination, a packet is sent from the upstream node
through router A to router B. Our goal is to characterize the nodal delay at router A.
Note that router A has an outbound link leading to router B. This link is preceded
by a queue (also known as a buffer). When the packet arrives at router A from the
upstream node, router A examines the packet’s header to determine the appropriate
outbound link for the packet and then directs the packet to this link. In this exam-
ple, the outbound link for the packet is the one that leads to router B. A packet can
be transmitted on a link only if there is no other packet currently being transmitted
on the link and if there are no other packets preceding it in the queue; if the link is
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Figure 1.16 ¢ The nodal delay at router A

currently busy or if there are other packets already queued for the link, the newly
arriving packet will then join the queue.

Processing Delay

The time required to examine the packet’s header and determine where to direct
the packet is part of the processing delay. The processing delay can also include
other factors, such as the time needed to check for bit-level errors in the packet
that occurred in transmitting the packet’s bits from the upstream node to router A.
Processing delays in high-speed routers are typically on the order of microseconds
or less. After this nodal processing, the router directs the packet to the queue that
precedes the link to router B. (In Chapter 4 we’ll study the details of how a router
operates.)

Queuing Delay

At the queue, the packet experiences a queuing delay as it waits to be transmitted
onto the link. The length of the queuing delay of a specific packet will depend on the
number of earlier-arriving packets that are queued and waiting for transmission onto
the link. If the queue is empty and no other packet is currently being transmitted, then
our packet’s queuing delay will be zero. On the other hand, if the traffic is heavy and
many other packets are also waiting to be transmitted, the queuing delay will be long.
We will see shortly that the number of packets that an arriving packet might expect
to find is a function of the intensity and nature of the traffic arriving at the queue.
Queuing delays can be on the order of microseconds to milliseconds in practice.

Transmission Delay

Assuming that packets are transmitted in a first-come-first-served manner, as is com-
mon in packet-switched networks, our packet can be transmitted only after all the
packets that have arrived before it have been transmitted. Denote the length of the
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packet by L bits, and denote the transmission rate of the link from router A to router
B by R bits/sec. For example, for a 10 Mbps Ethernet link, the rate is R = 10 Mbps;
for a 100 Mbps Ethernet link, the rate is R = 100 Mbps. The transmission delay is
L/R. This is the amount of time required to push (that is, transmit) all of the packet’s
bits into the link. Transmission delays are typically on the order of microseconds to
milliseconds in practice.

Propagation Delay

Once a bit is pushed into the link, it needs to propagate to router B. The time required
to propagate from the beginning of the link to router B is the propagation delay. The
bit propagates at the propagation speed of the link. The propagation speed depends
on the physical medium of the link (that is, fiber optics, twisted-pair copper wire, and
so on) and is in the range of

2 - 10% meters/sec to 3 - 10® meters/sec

which is equal to, or a little less than, the speed of light. The propagation delay is the
distance between two routers divided by the propagation speed. That is, the propaga-
tion delay is d/s, where d is the distance between router A and router B and s is the
propagation speed of the link. Once the last bit of the packet propagates to node B,
it and all the preceding bits of the packet are stored in router B. The whole process
then continues with router B now performing the forwarding. In wide-area networks,
propagation delays are on the order of milliseconds.

Comparing Transmission and Propagation Delay

Newcomers to the field of computer networking sometimes have difficulty under-
standing the difference between transmission delay and propagation delay. The dif-
ference is subtle but important. The transmission delay is the amount of time required
for the router to push out the packet; it is a function of the packet’s length and the
transmission rate of the link, but has nothing to do with the distance between the two
routers. The propagation delay, on the other hand, is the time it takes a bit to propa-
gate from one router to the next; it is a function of the distance between the two rout-
ers, but has nothing to do with the packet’s length or the transmission rate of the link.

An analogy might clarify the notions of transmission and propagation delay.
Consider a highway that has a tollbooth every 100 kilometers, as shown in Fig-
ure 1.17. You can think of the highway segments between tollbooths as links and
the tollbooths as routers. Suppose that cars travel (that is, propagate) on the highway
at a rate of 100 km/hour (that is, when a car leaves a tollbooth, it instantaneously
accelerates to 100 km/hour and maintains that speed between tollbooths). Suppose
next that 10 cars, traveling together as a caravan, follow each other in a fixed order.
You can think of each car as a bit and the caravan as a packet. Also suppose that each
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Figure 1.17 + Caravan analogy

tollbooth services (that is, transmits) a car at a rate of one car per 12 seconds, and that
it is late at night so that the caravan’s cars are the only cars on the highway. Finally,
suppose that whenever the first car of the caravan arrives at a tollbooth, it waits at
the entrance until the other nine cars have arrived and lined up behind it. (Thus, the
entire caravan must be stored at the tollbooth before it can begin to be forwarded.)
The time required for the tollbooth to push the entire caravan onto the highway is
(10 cars)/(5 cars/minute) = 2 minutes. This time is analogous to the transmission
delay in a router. The time required for a car to travel from the exit of one tollbooth
to the next tollbooth is 100 km/(100 km/hour) = 1 hour. This time is analogous to
propagation delay. Therefore, the time from when the caravan is stored in front of a
tollbooth until the caravan is stored in front of the next tollbooth is the sum of trans-
mission delay and propagation delay—in this example, 62 minutes.

Let’s explore this analogy a bit more. What would happen if the tollbooth ser-
vice time for a caravan were greater than the time for a car to travel between toll-
booths? For example, suppose now that the cars travel at the rate of 1,000 km/hour
and the tollbooth services cars at the rate of one car per minute. Then the traveling
delay between two tollbooths is 6 minutes and the time to serve a caravan is 10 min-
utes. In this case, the first few cars in the caravan will arrive at the second tollbooth
before the last cars in the caravan leave the first tollbooth. This situation also arises
in packet-switched networks—the first bits in a packet can arrive at a router while
many of the remaining bits in the packet are still waiting to be transmitted by the
preceding router.

If a picture speaks a thousand words, then an animation must speak a million
words. The Web site for this textbook provides an interactive animation that nicely
illustrates and contrasts transmission delay and propagation delay. The reader is
highly encouraged to visit that animation. [Smith 2009] also provides a very read-
able discussion of propagation, queueing, and transmission delays.

If we let dyrocs dqueues dirans> and dpyrop denote the processing, queuing, transmis-

prop
sion, and propagation delays, then the total nodal delay is given by

dnodal = dpmc + dqueue + dtrans + dpr()p

The contribution of these delay components can vary significantly. For example,
dprop can be negligible (for example, a couple of microseconds) for a link connecting
is hundreds of millisec-

two routers on the same university campus; however, dp,
onds for two routers interconnected by a geostationary satellite link, and can be the
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dominant term in d,,q,. Similarly, d,.,,, can range from negligible to significant. Its
contribution is typically negligible for transmission rates of 10 Mbps and higher (for
example, for LANs); however, it can be hundreds of milliseconds for large Internet
packets sent over low-speed dial-up modem links. The processing delay, droc, is
often negligible; however, it strongly influences a router’s maximum throughput,
which is the maximum rate at which a router can forward packets.

1.4.2 Queuing Delay and Packet Loss

The most complicated and interesting component of nodal delay is the queuing delay,
dgueue- In fact, queuing delay is so important and interesting in computer networking
that thousands of papers and numerous books have been written about it [Bertsekas
1991; Kleinrock 1975, Kleinrock 1976]. We give only a high-level, intuitive discus-
sion of queuing delay here; the more curious reader may want to browse through
some of the books (or even eventually write a PhD thesis on the subject!). Unlike the
other three delays (namely, dyroc; diranss and dyop), the queuing delay can vary from
packet to packet. For example, if 10 packets arrive at an empty queue at the same
time, the first packet transmitted will suffer no queuing delay, while the last packet
transmitted will suffer a relatively large queuing delay (while it waits for the other
nine packets to be transmitted). Therefore, when characterizing queuing delay, one
typically uses statistical measures, such as average queuing delay, variance of queu-
ing delay, and the probability that the queuing delay exceeds some specified value.

When is the queuing delay large and when is it insignificant? The answer to this
question depends on the rate at which traffic arrives at the queue, the transmission
rate of the link, and the nature of the arriving traffic, that is, whether the traffic arrives
periodically or arrives in bursts. To gain some insight here, let a denote the average
rate at which packets arrive at the queue (a is in units of packets/sec). Recall that R
is the transmission rate; that is, it is the rate (in bits/sec) at which bits are pushed out
of the queue. Also suppose, for simplicity, that all packets consist of L bits. Then the
average rate at which bits arrive at the queue is La bits/sec. Finally, assume that the
queue is very big, so that it can hold essentially an infinite number of bits. The ratio
La/R, called the traffic intensity, often plays an important role in estimating the
extent of the queuing delay. If La/R > 1, then the average rate at which bits arrive at
the queue exceeds the rate at which the bits can be transmitted from the queue. In this
unfortunate situation, the queue will tend to increase without bound and the queuing
delay will approach infinity! Therefore, one of the golden rules in traffic engineering
is: Design your system so that the traffic intensity is no greater than 1.

Now consider the case La/R = 1. Here, the nature of the arriving traffic impacts
the queuing delay. For example, if packets arrive periodically—that is, one packet
arrives every L/R seconds—then every packet will arrive at an empty queue and
there will be no queuing delay. On the other hand, if packets arrive in bursts but
periodically, there can be a significant average queuing delay. For example, sup-
pose N packets arrive simultaneously every (L/R)N seconds. Then the first packet
transmitted has no queuing delay; the second packet transmitted has a queuing delay
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of L/R seconds; and more generally, the nth packet transmitted has a queuing delay
of (n — 1)L/R seconds. We leave it as an exercise for you to calculate the average
queuing delay in this example.

The two examples of periodic arrivals described above are a bit academic. Typically,
the arrival process to a queue is random; that is, the arrivals do not follow any pattern
and the packets are spaced apart by random amounts of time. In this more realistic case,
the quantity La/R is not usually sufficient to fully characterize the queuing delay statis-
tics. Nonetheless, it is useful in gaining an intuitive understanding of the extent of the
queuing delay. In particular, if the traffic intensity is close to zero, then packet arrivals
are few and far between and it is unlikely that an arriving packet will find another packet
in the queue. Hence, the average queuing delay will be close to zero. On the other hand,
when the traffic intensity is close to 1, there will be intervals of time when the arrival
rate exceeds the transmission capacity (due to variations in packet arrival rate), and
a queue will form during these periods of time; when the arrival rate is less than the
transmission capacity, the length of the queue will shrink. Nonetheless, as the traffic
intensity approaches 1, the average queue length gets larger and larger. The qualitative
dependence of average queuing delay on the traffic intensity is shown in Figure 1.18.

One important aspect of Figure 1.18 is the fact that as the traffic intensity
approaches 1, the average queuing delay increases rapidly. A small percentage
increase in the intensity will result in a much larger percentage-wise increase in
delay. Perhaps you have experienced this phenomenon on the highway. If you regu-
larly drive on a road that is typically congested, the fact that the road is typically
congested means that its traffic intensity is close to 1. If some event causes an even
slightly larger-than-usual amount of traffic, the delays you experience can be huge.

To really get a good feel for what queuing delays are about, you are encouraged
once again to visit the textbook Web site, which provides an interactive animation
for a queue. If you set the packet arrival rate high enough so that the traffic intensity
exceeds 1, you will see the queue slowly build up over time.

Average queuing delay

N e e e e e

A 4

La/R

Figure 1.18 ¢ Dependence of average queuing delay on traffic intensity
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Packet Loss

In our discussions above, we have assumed that the queue is capable of holding an
infinite number of packets. In reality a queue preceding a link has finite capacity,
although the queuing capacity greatly depends on the router design and cost. Because
the queue capacity is finite, packet delays do not really approach infinity as the traf-
fic intensity approaches 1. Instead, a packet can arrive to find a full queue. With no
place to store such a packet, a router will drop that packet; that is, the packet will be
lost. This overflow at a queue can again be seen in the interactive animation when
the traffic intensity is greater than 1.

From an end-system viewpoint, a packet loss will look like a packet having
been transmitted into the network core but never emerging from the network at the
destination. The fraction of lost packets increases as the traffic intensity increases.
Therefore, performance at a node is often measured not only in terms of delay, but
also in terms of the probability of packet loss. As we’ll discuss in the subsequent
chapters, a lost packet may be retransmitted on an end-to-end basis in order to ensure
that all data are eventually transferred from source to destination.

1.4.3 End-to-End Delay

Our discussion up to this point has focused on the nodal delay, that is, the delay at a
single router. Let’s now consider the total delay from source to destination. To get a
handle on this concept, suppose there are N — 1 routers between the source host and
the destination host. Let’s also suppose for the moment that the network is uncon-
gested (so that queuing delays are negligible), the processing delay at each router
and at the source host is djy,, the transmission rate out of each router and out of the

source host is R bits/sec, and the propagation on each link is d,,,,. The nodal delays
accumulate and give an end-to-end delay,
dend*end =N (dproc + dtrans + dprop) (12)

where, once again, d,.,,, = L/R, where L is the packet size. Note that Equation 1.2 is a
generalization of Equation 1.1, which did not take into account processing and propaga-
tion delays. We leave it to you to generalize Equation 1.2 to the case of heterogeneous
delays at the nodes and to the presence of an average queuing delay at each node.

Traceroute

To get a hands-on feel for end-to-end delay in a computer network, we can make use
of the Traceroute program. Traceroute is a simple program that can run in any Inter-
net host. When the user specifies a destination hostname, the program in the source
host sends multiple, special packets toward that destination. As these packets work
their way toward the destination, they pass through a series of routers. When a router
receives one of these special packets, it sends back to the source a short message that
contains the name and address of the router.

VideoNote
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More specifically, suppose there are N — 1 routers between the source and the
destination. Then the source will send N special packets into the network, with each
packet addressed to the ultimate destination. These N special packets are marked /
through N, with the first packet marked / and the last packet marked N. When the
nth router receives the nth packet marked n, the router does not forward the packet
toward its destination, but instead sends a message back to the source. When the
destination host receives the Nth packet, it too returns a message back to the source.
The source records the time that elapses between when it sends a packet and when it
receives the corresponding return message; it also records the name and address of
the router (or the destination host) that returns the message. In this manner, the source
can reconstruct the route taken by packets flowing from source to destination, and the
source can determine the round-trip delays to all the intervening routers. Traceroute
actually repeats the experiment just described three times, so the source actually
sends 3 ¢ N packets to the destination. RFC 1393 describes Traceroute in detail.

Here is an example of the output of the Traceroute program, where the route was
being traced from the source host gaia.cs.umass.edu (at the University of Massachusetts)
to a host in the computer science department at the University of Sorbonne in Paris
(formerly the university was known as UPMC). The output has six columns: the first
column is the n value described above, that is, the number of the router along the route;
the second column is the name of the router; the third column is the address of the router
(of the form xxx.xxx.xxX.xxX); the last three columns are the round-trip delays for three
experiments. If the source receives fewer than three messages from any given router
(due to packet loss in the network), Traceroute places an asterisk just after the router
number and reports fewer than three round-trip times for that router.

gw-vlan-2451.cs.umass.edu (128.119.245.1) 1.899 ms 3.266 ms 3.280 ms
j-cs-gw-int-10-240.cs.umass.edu (10.119.240.254) 1.296 ms 1.276 ms
1.245 ms

nS5-rt-1-1-xe-2-1-0.gw.umass.edu (128.119.3.33) 2.237 ms 2.217 ms
2.187 ms

corel-rt-et-5-2-0.gw.umass.edu (128.119.0.9) 0.351 ms 0.392 ms 0.380 ms
borderl-rt-et-5-0-0.gw.umass.edu (192.80.83.102) 0.345 ms 0.345 ms
0.344 ms

nox300gwl-umass-re.nox.org (192.5.89.101) 3.260 ms 0.416 ms 3.127 ms
nox300gwl-umass-re.nox.org (192.5.89.101) 3.165 ms 7.326 ms 7.311 ms
198.71.45.237 (198.71.45.237) 77.826 ms 77.246 ms 77.744 ms
renater-1bl-gw.mxl.par.fr.geant.net (62.40.124.70) 79.357 ms 77.729
79.152 ms

193.51.180.109 (193.51.180.109) 78.379 ms 79.936 80.042 ms
*193.51.180.109 (193.51.180.109) 80.640 ms *

*195.221.127.182 (195.221.127.182) 78.408 ms *

195.221.127.182 (195.221.127.182) 80.686 ms 80.796 ms 78.434 ms
r-upmcl.reseau.jussieu.fr (134.157.254.10) 78.399 ms * 81.353 ms
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In the trace above, there are 14 routers between the source and the destination. Most
of these routers have a name, and all of them have addresses. For example, the
name of Router 4 is corel-rt-et-5-2-0.gw.umass.edu and its address is
128.119.0.9. Looking at the data provided for this same router, we see that in
the first of the three trials the round-trip delay between the source and the router
was 0.351 msec. The round-trip delays for the subsequent two trials were 0.392
and 0.380 msec. These round-trip delays include all of the delays just discussed,
including transmission delays, propagation delays, router processing delays, and
queuing delay.

Because the queuing delay is varying with time, the round-trip delay of
packet n sent to a router n can sometimes be longer than the round-trip delay of
packet n+1 sent to router n+1. Indeed, we observe this phenomenon in the above
example: the delay to Router 12 is smaller than the delay to Router 11! Also note
the big increase in the round-trip delay when going from router 7 to router 8. This
is due to a transatlantic fiber-optic link between routers 7 and 8, giving rise to a
relatively large propagation delay. There are a number of free software programs
that provide a graphical interface to Traceroute; one of our favorites is PingPlotter
[PingPlotter 2020].

End System, Application, and Other Delays

In addition to processing, transmission, and propagation delays, there can be addi-
tional significant delays in the end systems. For example, an end system wanting
to transmit a packet into a shared medium (e.g., as in a WiFi or cable modem sce-
nario) may purposefully delay its transmission as part of its protocol for sharing the
medium with other end systems; we’ll consider such protocols in detail in Chapter 6.
Another important delay is media packetization delay, which is present in Voice-
over-IP (VoIP) applications. In VoIP, the sending side must first fill a packet with
encoded digitized speech before passing the packet to the Internet. This time to fill a
packet—called the packetization delay—can be significant and can impact the user-
perceived quality of a VoIP call. This issue will be further explored in a homework
problem at the end of this chapter.

1.4.4 Throughput in Computer Networks

In addition to delay and packet loss, another critical performance measure in com-
puter networks is end-to-end throughput. To define throughput, consider transferring
a large file from Host A to Host B across a computer network. This transfer might
be, for example, a large video clip from one computer to another. The instantaneous
throughput at any instant of time is the rate (in bits/sec) at which Host B is receiving
the file. (Many applications display the instantaneous throughput during downloads
in the user interface—perhaps you have observed this before! You might like to try
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measuring the end-to-end delay and download throughput between your and servers
around the Internet using the speedtest application [Speedtest 2020].) If the file con-
sists of F bits and the transfer takes 7 seconds for Host B to receive all F bits, then
the average throughput of the file transfer is F/T bits/sec. For some applications,
such as Internet telephony, it is desirable to have a low delay and an instantaneous
throughput consistently above some threshold (for example, over 24 kbps for some
Internet telephony applications and over 256 kbps for some real-time video applica-
tions). For other applications, including those involving file transfers, delay is not
critical, but it is desirable to have the highest possible throughput.

To gain further insight into the important concept of throughput, let’s consider
a few examples. Figure 1.19(a) shows two end systems, a server and a client, con-
nected by two communication links and a router. Consider the throughput for a file
transfer from the server to the client. Let R, denote the rate of the link between the
server and the router; and R. denote the rate of the link between the router and
the client. Suppose that the only bits being sent in the entire network are those
from the server to the client. We now ask, in this ideal scenario, what is the server-
to-client throughput? To answer this question, we may think of bits as fluid and com-
munication links as pipes. Clearly, the server cannot pump bits through its link at a
rate faster than R, bps; and the router cannot forward bits at a rate faster than R. bps.
If R, < R, then the bits pumped by the server will “flow” right through the router
and arrive at the client at a rate of R, bps, giving a throughput of R, bps. If, on the
other hand, R. < R,, then the router will not be able to forward bits as quickly as it
receives them. In this case, bits will only leave the router at rate R., giving an end-
to-end throughput of R... (Note also that if bits continue to arrive at the router at rate
R,, and continue to leave the router at R, the backlog of bits at the router waiting
for transmission to the client will grow and grow—a most undesirable situation!)

<y
a.
==y R == ]
Server Client

b.

Figure 1.19 ¢ Throughput for a file transfer from server to client
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Thus, for this simple two-link network, the throughput is min{R., R, }, that is, it is the
transmission rate of the bottleneck link. Having determined the throughput, we can
now approximate the time it takes to transfer a large file of F bits from server to cli-
ent as F/min{R,, R.}. For a specific example, suppose that you are downloading an
MP3 file of F = 32 million bits, the server has a transmission rate of R, = 2 Mbps,
and you have an access link of R. = 1 Mbps. The time needed to transfer the file is
then 32 seconds. Of course, these expressions for throughput and transfer time are
only approximations, as they do not account for store-and-forward and processing
delays as well as protocol issues.

Figure 1.19(b) now shows a network with N links between the server and the
client, with the transmission rates of the N links being Ry, R,, . . ., Ry. Applying
the same analysis as for the two-link network, we find that the throughput for a file
transfer from server to client is min{R;, R,, . . ., Ry}, which is once again the trans-
mission rate of the bottleneck link along the path between server and client.

Now consider another example motivated by today’s Internet. Figure 1.20(a)
shows two end systems, a server and a client, connected to a computer network.
Consider the throughput for a file transfer from the server to the client. The server is
connected to the network with an access link of rate R, and the client is connected to
the network with an access link of rate R.. Now suppose that all the links in the core
of the communication network have very high transmission rates, much higher than
R, and R,. Indeed, today, the core of the Internet is over-provisioned with high speed
links that experience little congestion. Also suppose that the only bits being sent in
the entire network are those from the server to the client. Because the core of the
computer network is like a wide pipe in this example, the rate at which bits can flow
from source to destination is again the minimum of R, and R,, that is, throughput =
min{R,, R.}. Therefore, the constraining factor for throughput in today’s Internet is
typically the access network.

For a final example, consider Figure 1.20(b) in which there are 10 servers and
10 clients connected to the core of the computer network. In this example, there are
10 simultaneous downloads taking place, involving 10 client-server pairs. Suppose
that these 10 downloads are the only traffic in the network at the current time. As
shown in the figure, there is a link in the core that is traversed by all 10 downloads.
Denote R for the transmission rate of this link R. Let’s suppose that all server access
links have the same rate R,, all client access links have the same rate R., and the
transmission rates of all the links in the core—except the one common link of rate
R—are much larger than R, R., and R. Now we ask, what are the throughputs of
the downloads? Clearly, if the rate of the common link, R, is large—say a hundred
times larger than both R, and R.—then the throughput for each download will once
again be min{R,, R.}. But what if the rate of the common link is of the same order
as R, and R.? What will the throughput be in this case? Let’s take a look at a spe-
cific example. Suppose R, = 2 Mbps, R. = 1 Mbps, R = 5 Mbps, and the com-
mon link divides its transmission rate equally among the 10 downloads. Then the
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Figure 1.20 ¢ End-to-end throughput: (a) Client downloads a file from
server; (b) 10 clients downloading with 10 servers

bottleneck for each download is no longer in the access network, but is now instead
the shared link in the core, which only provides each download with 500 kbps of
throughput. Thus, the end-to-end throughput for each download is now reduced to
500 kbps.

The examples in Figure 1.19 and Figure 1.20(a) show that throughput depends
on the transmission rates of the links over which the data flows. We saw that when
there is no other intervening traffic, the throughput can simply be approximated as
the minimum transmission rate along the path between source and destination. The
example in Figure 1.20(b) shows that more generally the throughput depends not
only on the transmission rates of the links along the path, but also on the interven-
ing traffic. In particular, a link with a high transmission rate may nonetheless be the
bottleneck link for a file transfer if many other data flows are also passing through
that link. We will examine throughput in computer networks more closely in the
homework problems and in the subsequent chapters.
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1.5 Protocol Layers and Their Service Models

From our discussion thus far, it is apparent that the Internet is an extremely com-
plicated system. We have seen that there are many pieces to the Internet: numerous
applications and protocols, various types of end systems, packet switches, and vari-
ous types of link-level media. Given this enormous complexity, is there any hope of
organizing a network architecture, or at least our discussion of network architecture?
Fortunately, the answer to both questions is yes.

1.5.1 Layered Architecture

Before attempting to organize our thoughts on Internet architecture, let’s look
for a human analogy. Actually, we deal with complex systems all the time in our
everyday life. Imagine if someone asked you to describe, for example, the air-
line system. How would you find the structure to describe this complex system
that has ticketing agents, baggage checkers, gate personnel, pilots, airplanes,
air traffic control, and a worldwide system for routing airplanes? One way to
describe this system might be to describe the series of actions you take (or oth-
ers take for you) when you fly on an airline. You purchase your ticket, check
your bags, go to the gate, and eventually get loaded onto the plane. The plane
takes off and is routed to its destination. After your plane lands, you deplane at
the gate and claim your bags. If the trip was bad, you complain about the flight
to the ticket agent (getting nothing for your effort). This scenario is shown in
Figure 1.21.

A

Ticket (purchase) Ticket/(complain)
Baggage (check) Baggage (claim)
Gates (load) Gates (unload)
Runway takeoff Runway landing
Airplane routing Airplane routing

Airplane routing

Figure 1.21 ¢ Taking an airplane trip: actions
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Figure 1.22 ¢ Horizontal layering of airline functionality

Already, we can see some analogies here with computer networking: You are
being shipped from source to destination by the airline; a packet is shipped from
source host to destination host in the Internet. But this is not quite the analogy we
are after. We are looking for some structure in Figure 1.21. Looking at Figure 1.21,
we note that there is a ticketing function at each end; there is also a baggage func-
tion for already-ticketed passengers, and a gate function for already-ticketed and
already-baggage-checked passengers. For passengers who have made it through the
gate (that is, passengers who are already ticketed, baggage-checked, and through the
gate), there is a takeoff and landing function, and while in flight, there is an airplane-
routing function. This suggests that we can look at the functionality in Figure 1.21 in
a horizontal manner, as shown in Figure 1.22.

Figure 1.22 has divided the airline functionality into layers, providing a frame-
work in which we can discuss airline travel. Note that each layer, combined with the
layers below it, implements some functionality, some service. At the ticketing layer
and below, airline-counter-to-airline-counter transfer of a person is accomplished. At
the baggage layer and below, baggage-check-to-baggage-claim transfer of a person
and bags is accomplished. Note that the baggage layer provides this service only to an
already-ticketed person. At the gate layer, departure-gate-to-arrival-gate transfer of
a person and bags is accomplished. At the takeoff/landing layer, runway-to-runway
transfer of people and their bags is accomplished. Each layer provides its service
by (1) performing certain actions within that layer (for example, at the gate layer,
loading and unloading people from an airplane) and by (2) using the services of the
layer directly below it (for example, in the gate layer, using the runway-to-runway
passenger transfer service of the takeoff/landing layer).

A layered architecture allows us to discuss a well-defined, specific part of a
large and complex system. This simplification itself is of considerable value by
providing modularity, making it much easier to change the implementation of the
service provided by the layer. As long as the layer provides the same service to the
layer above it, and uses the same services from the layer below it, the remainder of
the system remains unchanged when a layer’s implementation is changed. (Note
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that changing the implementation of a service is very different from changing the
service itself!) For example, if the gate functions were changed (for instance, to have
people board and disembark by height), the remainder of the airline system would
remain unchanged since the gate layer still provides the same function (loading and
unloading people); it simply implements that function in a different manner after the
change. For large and complex systems that are constantly being updated, the ability
to change the implementation of a service without affecting other components of the
system is another important advantage of layering.

Protocol Layering

But enough about airlines. Let’s now turn our attention to network protocols. To
provide structure to the design of network protocols, network designers organize
protocols—and the network hardware and software that implement the protocols—
in layers. Each protocol belongs to one of the layers, just as each function in the
airline architecture in Figure 1.22 belonged to a layer. We are again interested in
the services that a layer offers to the layer above—the so-called service model of
a layer. Just as in the case of our airline example, each layer provides its service by
(1) performing certain actions within that layer and by (2) using the services of the
layer directly below it. For example, the services provided by layer n may include
reliable delivery of messages from one edge of the network to the other. This might
be implemented by using an unreliable edge-to-edge message delivery service of
layer n — 1, and adding layer n functionality to detect and retransmit lost messages.

A protocol layer can be implemented in software, in hardware, or in a combina-
tion of the two. Application-layer protocols—such as HTTP and SMTP—are almost
always implemented in software in the end systems; so are transport-layer protocols.
Because the physical layer and data link layers are responsible for handling commu-
nication over a specific link, they are typically implemented in a network interface
card (for example, Ethernet or WiFi interface cards) associated with a given link. The
network layer is often a mixed implementation of hardware and software. Also note
that just as the functions in the layered airline architecture were distributed among
the various airports and flight control centers that make up the system, so too is a
layer n protocol distributed among the end systems, packet switches, and other com-
ponents that make up the network. That is, there’s often a piece of a layer n protocol
in each of these network components.

Protocol layering has conceptual and structural advantages [RFC 3439]. As
we have seen, layering provides a structured way to discuss system components.
Modularity makes it easier to update system components. We mention, however,
that some researchers and networking engineers are vehemently opposed to layering
[Wakeman 1992]. One potential drawback of layering is that one layer may duplicate
lower-layer functionality. For example, many protocol stacks provide error recovery
on both a per-link basis and an end-to-end basis. A second potential drawback is that
functionality at one layer may need information (for example, a timestamp value)
that is present only in another layer; this violates the goal of separation of layers.

49



50 CHAPTER T o COMPUTER NETWORKS AND THE INTERNET

Application

Transport

Network

Link

Physical

Five-layer
Internet
protocol stack

Figure 1.23 ¢ The Internet protocol stack

When taken together, the protocols of the various layers are called the protocol
stack. The Internet protocol stack consists of five layers: the physical, link, network,
transport, and application layers, as shown in Figure 1.23. If you examine the Table
of Contents, you will see that we have roughly organized this book using the lay-
ers of the Internet protocol stack. We take a top-down approach, first covering the
application layer and then proceeding downward.

Application Layer

The application layer is where network applications and their application-layer pro-
tocols reside. The Internet’s application layer includes many protocols, such as the
HTTP protocol (which provides for Web document request and transfer), SMTP
(which provides for the transfer of e-mail messages), and FTP (which provides for
the transfer of files between two end systems). We’ll see that certain network func-
tions, such as the translation of human-friendly names for Internet end systems like
www.ietf.org to a 32-bit network address, are also done with the help of a specific appli-
cation-layer protocol, namely, the domain name system (DNS). We’ll see in Chap-
ter 2 that it is very easy to create and deploy our own new application-layer protocols.

An application-layer protocol is distributed over multiple end systems, with the
application in one end system using the protocol to exchange packets of information
with the application in another end system. We’ll refer to this packet of information
at the application layer as a message.

Transport Layer

The Internet’s transport layer transports application-layer messages between application
endpoints. In the Internet, there are two transport protocols, TCP and UDP, either of
which can transport application-layer messages. TCP provides a connection-oriented
service to its applications. This service includes guaranteed delivery of application-layer



1.5 e PROTOCOL LAYERS AND THEIR SERVICE MODELS

messages to the destination and flow control (that is, sender/receiver speed matching).
TCP also breaks long messages into shorter segments and provides a congestion-control
mechanism, so that a source throttles its transmission rate when the network is con-
gested. The UDP protocol provides a connectionless service to its applications. This is a
no-frills service that provides no reliability, no flow control, and no congestion control.
In this book, we’ll refer to a transport-layer packet as a segment.

Network Layer

The Internet’s network layer is responsible for moving network-layer packets known
as datagrams from one host to another. The Internet transport-layer protocol (TCP
or UDP) in a source host passes a transport-layer segment and a destination address
to the network layer, just as you would give the postal service a letter with a destina-
tion address. The network layer then provides the service of delivering the segment
to the transport layer in the destination host.

The Internet’s network layer includes the celebrated IP protocol, which defines
the fields in the datagram as well as how the end systems and routers act on these
fields. There is only one IP protocol, and all Internet components that have a network
layer must run the IP protocol. The Internet’s network layer also contains routing
protocols that determine the routes that datagrams take between sources and destina-
tions. The Internet has many routing protocols. As we saw in Section 1.3, the Internet
is a network of networks, and within a network, the network administrator can run
any routing protocol desired. Although the network layer contains both the IP pro-
tocol and numerous routing protocols, it is often simply referred to as the IP layer,
reflecting the fact that IP is the glue that binds the Internet together.

Link Layer

The Internet’s network layer routes a datagram through a series of routers between
the source and destination. To move a packet from one node (host or router) to the
next node in the route, the network layer relies on the services of the link layer. In
particular, at each node, the network layer passes the datagram down to the link
layer, which delivers the datagram to the next node along the route. At this next node,
the link layer passes the datagram up to the network layer.

The services provided by the link layer depend on the specific link-layer protocol
that is employed over the link. For example, some link-layer protocols provide reli-
able delivery, from transmitting node, over one link, to receiving node. Note that this
reliable delivery service is different from the reliable delivery service of TCP, which
provides reliable delivery from one end system to another. Examples of link-layer pro-
tocols include Ethernet, WiFi, and the cable access network’s DOCSIS protocol. As
datagrams typically need to traverse several links to travel from source to destination,
a datagram may be handled by different link-layer protocols at different links along its
route. For example, a datagram may be handled by Ethernet on one link and by PPP on
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the next link. The network layer will receive a different service from each of the dif-
ferent link-layer protocols. In this book, we’ll refer to the link-layer packets as frames.

Physical Layer

While the job of the link layer is to move entire frames from one network element to
an adjacent network element, the job of the physical layer is to move the individual
bits within the frame from one node to the next. The protocols in this layer are again
link dependent and further depend on the actual transmission medium of the link (for
example, twisted-pair copper wire, single-mode fiber optics). For example, Ether-
net has many physical-layer protocols: one for twisted-pair copper wire, another for
coaxial cable, another for fiber, and so on. In each case, a bit is moved across the link
in a different way.

1.5.2 Encapsulation

Figure 1.24 shows the physical path that data takes down a sending end system’s
protocol stack, up and down the protocol stacks of an intervening link-layer switch
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Figure 1.24 + Hosts, routers, and linklayer switches; each contains a
different set of layers, reflecting their differences in functionality
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and router, and then up the protocol stack at the receiving end system. As we dis-
cuss later in this book, routers and link-layer switches are both packet switches.
Similar to end systems, routers and link-layer switches organize their network-
ing hardware and software into layers. But routers and link-layer switches do not
implement all of the layers in the protocol stack; they typically implement only
the bottom layers. As shown in Figure 1.24, link-layer switches implement lay-
ers 1 and 2; routers implement layers 1 through 3. This means, for example, that
Internet routers are capable of implementing the IP protocol (a layer 3 protocol),
while link-layer switches are not. We’ll see later that while link-layer switches do
not recognize IP addresses, they are capable of recognizing layer 2 addresses, such
as Ethernet addresses. Note that hosts implement all five layers; this is consistent
with the view that the Internet architecture puts much of its complexity at the edges
of the network.

Figure 1.24 also illustrates the important concept of encapsulation. At the
sending host, an application-layer message (M in Figure 1.24) is passed to the
transport layer. In the simplest case, the transport layer takes the message and
appends additional information (so-called transport-layer header information, H,
in Figure 1.24) that will be used by the receiver-side transport layer. The appli-
cation-layer message and the transport-layer header information together consti-
tute the transport-layer segment. The transport-layer segment thus encapsulates
the application-layer message. The added information might include information
allowing the receiver-side transport layer to deliver the message up to the appro-
priate application, and error-detection bits that allow the receiver to determine
whether bits in the message have been changed in route. The transport layer then
passes the segment to the network layer, which adds network-layer header infor-
mation (H, in Figure 1.24) such as source and destination end system addresses,
creating a network-layer datagram. The datagram is then passed to the link
layer, which (of course!) will add its own link-layer header information and cre-
ate a link-layer frame. Thus, we see that at each layer, a packet has two types of
fields: header fields and a payload field. The payload is typically a packet from
the layer above.

A useful analogy here is the sending of an interoffice memo from one corpo-
rate branch office to another via the public postal service. Suppose Alice, who is in
one branch office, wants to send a memo to Bob, who is in another branch office.
The memo is analogous to the application-layer message. Alice puts the memo
in an interoffice envelope with Bob’s name and department written on the front
of the envelope. The interoffice envelope is analogous to a transport-layer seg-
ment—it contains header information (Bob’s name and department number) and it
encapsulates the application-layer message (the memo). When the sending branch-
office mailroom receives the interoffice envelope, it puts the interoffice enve-
lope inside yet another envelope, which is suitable for sending through the public
postal service. The sending mailroom also writes the postal address of the sending
and receiving branch offices on the postal envelope. Here, the postal envelope
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is analogous to the datagram—it encapsulates the transport-layer segment (the
interoffice envelope), which encapsulates the original message (the memo). The
postal service delivers the postal envelope to the receiving branch-office mail-
room. There, the process of de-encapsulation is begun. The mailroom extracts the
interoffice memo and forwards it to Bob. Finally, Bob opens the envelope and
removes the memo.

The process of encapsulation can be more complex than that described above.
For example, a large message may be divided into multiple transport-layer segments
(which might themselves each be divided into multiple network-layer datagrams).
At the receiving end, such a segment must then be reconstructed from its constituent
datagrams.

1.6 Networks Under Attack

The Internet has become mission critical for many institutions today, including large
and small companies, universities, and government agencies. Many individuals also
rely on the Internet for many of their professional, social, and personal activities.
Billions of “things,” including wearables and home devices, are currently being con-
nected to the Internet. But behind all this utility and excitement, there is a dark side,
a side where “bad guys” attempt to wreak havoc in our daily lives by damaging our
Internet-connected computers, violating our privacy, and rendering inoperable the
Internet services on which we depend.

The field of network security is about how the bad guys can attack computer
networks and about how we, soon-to-be experts in computer networking, can
defend networks against those attacks, or better yet, design new architectures
that are immune to such attacks in the first place. Given the frequency and vari-
ety of existing attacks as well as the threat of new and more destructive future
attacks, network security has become a central topic in the field of computer
networking. One of the features of this textbook is that it brings network security
issues to the forefront.

Since we don’t yet have expertise in computer networking and Internet pro-
tocols, we’ll begin here by surveying some of today’s more prevalent security-
related problems. This will whet our appetite for more substantial discussions in the
upcoming chapters. So we begin here by simply asking, what can go wrong? How
are computer networks vulnerable? What are some of the more prevalent types of
attacks today?

The Bad Guys Can Put Malware into Your Host Via the Internet

We attach devices to the Internet because we want to receive/send data from/to the
Internet. This includes all kinds of good stuff, including Instagram posts, Internet
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search results, streaming music, video conference calls, streaming movies, and
so on. But, unfortunately, along with all that good stuff comes malicious stuff—
collectively known as malware—that can also enter and infect our devices. Once
malware infects our device it can do all kinds of devious things, including delet-
ing our files and installing spyware that collects our private information, such
as social security numbers, passwords, and keystrokes, and then sends this (over
the Internet, of course!) back to the bad guys. Our compromised host may also
be enrolled in a network of thousands of similarly compromised devices, col-
lectively known as a botnet, which the bad guys control and leverage for spam
e-mail distribution or distributed denial-of-service attacks (soon to be discussed)
against targeted hosts.

Much of the malware out there today is self-replicating: once it infects one host,
from that host it seeks entry into other hosts over the Internet, and from the newly
infected hosts, it seeks entry into yet more hosts. In this manner, self-replicating mal-
ware can spread exponentially fast.

The Bad Guys Can Attack Servers and Network Infrastructure

Another broad class of security threats are known as denial-of-service (DoS)
attacks. As the name suggests, a DoS attack renders a network, host, or other piece
of infrastructure unusable by legitimate users. Web servers, e-mail servers, DNS
servers (discussed in Chapter 2), and institutional networks can all be subject to DoS
attacks. The site Digital Attack Map allows use to visualize the top daily DoS attacks
worldwide [DAM 2020]. Most Internet DoS attacks fall into one of three categories:

e Vulnerability attack. — This involves sending a few well-crafted messages to a
vulnerable application or operating system running on a targeted host. If the right
sequence of packets is sent to a vulnerable application or operating system, the
service can stop or, worse, the host can crash.

*  Bandwidth flooding.  The attacker sends a deluge of packets to the targeted
host—so many packets that the target’s access link becomes clogged, preventing
legitimate packets from reaching the server.

e Connection flooding. The attacker establishes a large number of half-open or
fully open TCP connections (TCP connections are discussed in Chapter 3) at the
target host. The host can become so bogged down with these bogus connections
that it stops accepting legitimate connections.

Let’s now explore the bandwidth-flooding attack in more detail. Recalling our
delay and loss analysis discussion in Section 1.4.2, it’s evident that if the server
has an access rate of R bps, then the attacker will need to send traffic at a rate of
approximately R bps to cause damage. If R is very large, a single attack source
may not be able to generate enough traffic to harm the server. Furthermore, if all

55



56

CHAPTER 1

COMPUTER NETWORKS AND THE INTERNET

E —
zombie

e \\: %

/

“start Victim
attack” zombie
y— =
!é
Attacker ij
E -
e zombie
zombie

Figure 1.25 + A distributed denial-of-service attack

the traffic emanates from a single source, an upstream router may be able to detect
the attack and block all traffic from that source before the traffic gets near the
server. In a distributed DoS (DDoS) attack, illustrated in Figure 1.25, the attacker
controls multiple sources and has each source blast traffic at the target. With this
approach, the aggregate traffic rate across all the controlled sources needs to be
approximately R to cripple the service. DDoS attacks leveraging botnets with thou-
sands of comprised hosts are a common occurrence today [DAM 2020]. DDos
attacks are much harder to detect and defend against than a DoS attack from a
single host.

We encourage you to consider the following question as you work your way
through this book: What can computer network designers do to defend against
DoS attacks? We will see that different defenses are needed for the three types of
DoS attacks.

The Bad Guys Can Sniff Packets

Many users today access the Internet via wireless devices, such as WiFi-connected
laptops or handheld devices with cellular Internet connections (covered in Chapter 7).
While ubiquitous Internet access is extremely convenient and enables marvelous
new applications for mobile users, it also creates a major security vulnerability—by
placing a passive receiver in the vicinity of the wireless transmitter, that receiver
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can obtain a copy of every packet that is transmitted! These packets can contain all
kinds of sensitive information, including passwords, social security numbers, trade
secrets, and private personal messages. A passive receiver that records a copy of
every packet that flies by is called a packet sniffer.

Sniffers can be deployed in wired environments as well. In wired broadcast
environments, as in many Ethernet LANs, a packet sniffer can obtain copies of
broadcast packets sent over the LAN. As described in Section 1.2, cable access
technologies also broadcast packets and are thus vulnerable to sniffing. Further-
more, a bad guy who gains access to an institution’s access router or access link
to the Internet may be able to plant a sniffer that makes a copy of every packet
going to/from the organization. Sniffed packets can then be analyzed offline for
sensitive information.

Packet-sniffing software is freely available at various Web sites and as commer-
cial products. Professors teaching a networking course have been known to assign
lab exercises that involve writing a packet-sniffing and application-layer data recon-
struction program. Indeed, the Wireshark [Wireshark 2020] labs associated with this
text (see the introductory Wireshark lab at the end of this chapter) use exactly such
a packet sniffer!

Because packet sniffers are passive—that is, they do not inject packets into the
channel—they are difficult to detect. So, when we send packets into a wireless chan-
nel, we must accept the possibility that some bad guy may be recording copies of our
packets. As you may have guessed, some of the best defenses against packet sniffing
involve cryptography. We will examine cryptography as it applies to network secu-
rity in Chapter 8.

The Bad Guys Can Masquerade as Someone You Trust

It is surprisingly easy (you will have the knowledge to do so shortly as you proceed
through this text!) to create a packet with an arbitrary source address, packet content,
and destination address and then transmit this hand-crafted packet into the Internet,
which will dutifully forward the packet to its destination. Imagine the unsuspecting
receiver (say an Internet router) who receives such a packet, takes the (false) source
address as being truthful, and then performs some command embedded in the pack-
et’s contents (say modifies its forwarding table). The ability to inject packets into the
Internet with a false source address is known as IP spoofing, and is but one of many
ways in which one user can masquerade as another user.

To solve this problem, we will need end-point authentication, that is, a mech-
anism that will allow us to determine with certainty if a message originates from
where we think it does. Once again, we encourage you to think about how this
can be done for network applications and protocols as you progress through the
chapters of this book. We will explore mechanisms for end-point authentication
in Chapter 8.
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In closing this section, it’s worth considering how the Internet got to be such
an insecure place in the first place. The answer, in essence, is that the Internet was
originally designed to be that way, based on the model of “a group of mutually trust-
ing users attached to a transparent network™ [Blumenthal 2001]—a model in which
(by definition) there is no need for security. Many aspects of the original Internet
architecture deeply reflect this notion of mutual trust. For example, the ability for
one user to send a packet to any other user is the default rather than a requested/
granted capability, and user identity is taken at declared face value, rather than being
authenticated by default.

But today’s Internet certainly does not involve “mutually trusting users.” None-
theless, today’s users still need to communicate when they don’t necessarily trust
each other, may wish to communicate anonymously, may communicate indirectly
through third parties (e.g., Web caches, which we’ll study in Chapter 2, or mobility-
assisting agents, which we’ll study in Chapter 7), and may distrust the hardware,
software, and even the air through which they communicate. We now have many
security-related challenges before us as we progress through this book: We should
seek defenses against sniffing, end-point masquerading, man-in-the-middle attacks,
DDoS attacks, malware, and more. We should keep in mind that communication
among mutually trusted users is the exception rather than the rule. Welcome to the
world of modern computer networking!

1.7 History of Computer Networking and
the Internet

Sections 1.1 through 1.6 presented an overview of the technology of computer net-
working and the Internet. You should know enough now to impress your family and
friends! However, if you really want to be a big hit at the next cocktail party, you
should sprinkle your discourse with tidbits about the fascinating history of the Inter-
net [Segaller 1998].

1.7.1 The Development of Packet Switching: 1961-1972

The field of computer networking and today’s Internet trace their beginnings
back to the early 1960s, when the telephone network was the world’s dominant
communication network. Recall from Section 1.3 that the telephone network uses
circuit switching to transmit information from a sender to a receiver—an appro-
priate choice given that voice is transmitted at a constant rate between sender
and receiver. Given the increasing importance of computers in the early 1960s
and the advent of timeshared computers, it was perhaps natural to consider how
to hook computers together so that they could be shared among geographically
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distributed users. The traffic generated by such users was likely to be bursty—
intervals of activity, such as the sending of a command to a remote computer,
followed by periods of inactivity while waiting for a reply or while contemplat-
ing the received response.

Three research groups around the world, each unaware of the others’ work
[Leiner 1998], began inventing packet switching as an efficient and robust alterna-
tive to circuit switching. The first published work on packet-switching techniques
was that of Leonard Kleinrock [Kleinrock 1961; Kleinrock 1964], then a graduate
student at MIT. Using queuing theory, Kleinrock’s work elegantly demonstrated the
effectiveness of the packet-switching approach for bursty traffic sources. In 1964,
Paul Baran [Baran 1964] at the Rand Institute had begun investigating the use of
packet switching for secure voice over military networks, and at the National Physi-
cal Laboratory in England, Donald Davies and Roger Scantlebury were also devel-
oping their ideas on packet switching.

The work at MIT, Rand, and the NPL laid the foundations for today’s Inter-
net. But the Internet also has a long history of a let’s-build-it-and-demonstrate-it
attitude that also dates back to the 1960s. J. C. R. Licklider [DEC 1990] and
Lawrence Roberts, both colleagues of Kleinrock’s at MIT, went on to lead the
computer science program at the Advanced Research Projects Agency (ARPA)
in the United States. Roberts published an overall plan for the ARPAnet [Roberts
1967], the first packet-switched computer network and a direct ancestor of today’s
public Internet. On Labor Day in 1969, the first packet switch was installed at
UCLA under Kleinrock’s supervision, and three additional packet switches were
installed shortly thereafter at the Stanford Research Institute (SRI), UC Santa
Barbara, and the University of Utah (Figure 1.26). The fledgling precursor to the
Internet was four nodes large by the end of 1969. Kleinrock recalls the very first
use of the network to perform a remote login from UCLA to SRI, crashing the
system [Kleinrock 2004].

By 1972, ARPAnet had grown to approximately 15 nodes and was given its
first public demonstration by Robert Kahn. The first host-to-host protocol between
ARPAnet end systems, known as the network-control protocol (NCP), was com-
pleted [RFC 001]. With an end-to-end protocol available, applications could now be
written. Ray Tomlinson wrote the first e-mail program in 1972.

1.7.2 Proprietary Networks and Internetworking:
1972-1980

The initial ARPAnet was a single, closed network. In order to communicate with an
ARPAnet host, one had to be actually attached to another ARPAnet IMP. In the early
to mid-1970s, additional stand-alone packet-switching networks besides ARPAnet
came into being: ALOHANet, a microwave network linking universities on the
Hawaiian islands [Abramson 1970], as well as DARPA’s packet-satellite [RFC 829]
and packet-radio networks [Kahn 1978]; Telenet, a BBN commercial packet-switching
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Figure 1.26 + An early packet switch

network based on ARPAnet technology; Cyclades, a French packet-switching net-
work pioneered by Louis Pouzin [Think 2012]; Time-sharing networks such as
Tymnet and the GE Information Services network, among others, in the late 1960s
and early 1970s [Schwartz 1977]; IBM’s SNA (1969-1974), which paralleled the
ARPAnet work [Schwartz 1977].

The number of networks was growing. With perfect hindsight we can see that the
time was ripe for developing an encompassing architecture for connecting networks
together. Pioneering work on interconnecting networks (under the sponsorship of
the Defense Advanced Research Projects Agency (DARPA)), in essence creating
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a network of networks, was done by Vinton Cerf and Robert Kahn [Cerf 1974]; the
term internetting was coined to describe this work.

These architectural principles were embodied in TCP. The early versions of
TCP, however, were quite different from today’s TCP. The early versions of TCP
combined a reliable in-sequence delivery of data via end-system retransmission (still
part of today’s TCP) with forwarding functions (which today are performed by IP).
Early experimentation with TCP, combined with the recognition of the importance
of an unreliable, non-flow-controlled, end-to-end transport service for applications
such as packetized voice, led to the separation of IP out of TCP and the development
of the UDP protocol. The three key Internet protocols that we see today—TCP, UDP,
and IP—were conceptually in place by the end of the 1970s.

In addition to the DARPA Internet-related research, many other important net-
working activities were underway. In Hawaii, Norman Abramson was developing
ALOHAnet, a packet-based radio network that allowed multiple remote sites
on the Hawaiian Islands to communicate with each other. The ALOHA protocol
[Abramson 1970] was the first multiple-access protocol, allowing geographically
distributed users to share a single broadcast communication medium (a radio
frequency). Metcalfe and Boggs built on Abramson’s multiple-access protocol work
when they developed the Ethernet protocol [Metcalfe 1976] for wire-based shared
broadcast networks. Interestingly, Metcalfe and Boggs’ Ethernet protocol was moti-
vated by the need to connect multiple PCs, printers, and shared disks [Perkins 1994].
Twenty-five years ago, well before the PC revolution and the explosion of networks,
Metcalfe and Boggs were laying the foundation for today’s PC LANs.

1.7.3 A Proliferation of Networks: 1980-1990

By the end of the 1970s, approximately two hundred hosts were connected to the
ARPAnet. By the end of the 1980s the number of hosts connected to the public
Internet, a confederation of networks looking much like today’s Internet, would
reach a hundred thousand. The 1980s would be a time of tremendous growth.

Much of that growth resulted from several distinct efforts to create computer
networks linking universities together. BITNET provided e-mail and file transfers
among several universities in the Northeast. CSNET (computer science network)
was formed to link university researchers who did not have access to ARPAnet. In
1986, NSFNET was created to provide access to NSF-sponsored supercomputing
centers. Starting with an initial backbone speed of 56 kbps, NSFNET’s backbone
would be running at 1.5 Mbps by the end of the decade and would serve as a primary
backbone linking regional networks.

In the ARPAnet community, many of the final pieces of today’s Internet archi-
tecture were falling into place. January 1, 1983 saw the official deployment of
TCP/IP as the new standard host protocol for ARPAnet (replacing the NCP pro-
tocol). The transition [RFC 801] from NCP to TCP/IP was a flag day event—all
hosts were required to transfer over to TCP/IP as of that day. In the late 1980s,
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important extensions were made to TCP to implement host-based congestion con-
trol [Jacobson 1988]. The DNS, used to map between a human-readable Internet
name (for example, gaia.cs.umass.edu) and its 32-bit IP address, was also developed
[RFC 1034].

Paralleling this development of the ARPAnet (which was for the most part a
US effort), in the early 1980s the French launched the Minitel project, an ambitious
plan to bring data networking into everyone’s home. Sponsored by the French gov-
ernment, the Minitel system consisted of a public packet-switched network (based
on the X.25 protocol suite), Minitel servers, and inexpensive terminals with built-in
low-speed modems. The Minitel became a huge success in 1984 when the French
government gave away a free Minitel terminal to each French household that wanted
one. Minitel sites included free sites—such as a telephone directory site—as well as
private sites, which collected a usage-based fee from each user. At its peak in the
mid 1990s, it offered more than 20,000 services, ranging from home banking to spe-
cialized research databases. The Minitel was in a large proportion of French homes
10 years before most Americans had ever heard of the Internet.

1.7.4 The Internet Explosion: The 1990s

The 1990s were ushered in with a number of events that symbolized the continued
evolution and the soon-to-arrive commercialization of the Internet. ARPAnet, the
progenitor of the Internet, ceased to exist. In 1991, NSENET lifted its restrictions on
the use of NSFNET for commercial purposes. NSFNET itself would be decommis-
sioned in 1995, with Internet backbone traffic being carried by commercial Internet
Service Providers.

The main event of the 1990s was to be the emergence of the World Wide Web
application, which brought the Internet into the homes and businesses of millions
of people worldwide. The Web served as a platform for enabling and deploying
hundreds of new applications that we take for granted today, including search (e.g.,
Google and Bing) Internet commerce (e.g., Amazon and eBay) and social networks
(e.g., Facebook).

The Web was invented at CERN by Tim Berners-Lee between 1989 and 1991
[Berners-Lee 1989], based on ideas originating in earlier work on hypertext from the
1940s by Vannevar Bush [Bush 1945] and since the 1960s by Ted Nelson [Xanadu
2012]. Berners-Lee and his associates developed initial versions of HTML, HTTP,
a Web server, and a browser—the four key components of the Web. Around the end
of 1993 there were about two hundred Web servers in operation, this collection of
servers being just a harbinger of what was about to come. At about this time sev-
eral researchers were developing Web browsers with GUI interfaces, including Marc
Andreessen, who along with Jim Clark, formed Mosaic Communications, which
later became Netscape Communications Corporation [Cusumano 1998; Quittner
1998]. By 1995, university students were using Netscape browsers to surf the Web
on a daily basis. At about this time companies—big and small—began to operate
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Web servers and transact commerce over the Web. In 1996, Microsoft started to
make browsers, which started the browser war between Netscape and Microsoft,
which Microsoft won a few years later [Cusumano 1998].

The second half of the 1990s was a period of tremendous growth and innovation
for the Internet, with major corporations and thousands of startups creating Internet
products and services. By the end of the millennium the Internet was supporting
hundreds of popular applications, including four killer applications:

* E-mail, including attachments and Web-accessible e-mail
* The Web, including Web browsing and Internet commerce
» Instant messaging, with contact lists

* Peer-to-peer file sharing of MP3s, pioneered by Napster

Interestingly, the first two killer applications came from the research community,
whereas the last two were created by a few young entrepreneurs.

The period from 1995 to 2001 was a roller-coaster ride for the Internet in the
financial markets. Before they were even profitable, hundreds of Internet startups
made initial public offerings and started to be traded in a stock market. Many com-
panies were valued in the billions of dollars without having any significant revenue
streams. The Internet stocks collapsed in 2000-2001, and many startups shut down.
Nevertheless, a number of companies emerged as big winners in the Internet space,
including Microsoft, Cisco, Yahoo, eBay, Google, and Amazon.

1.7.5 The New Millennium

In the first two decades of the 21st century, perhaps no other technology has trans-
formed society more than the Internet along with Internet-connected smartphones.
And innovation in computer networking continues at a rapid pace. Advances are
being made on all fronts, including deployments of faster routers and higher trans-
mission speeds in both access networks and in network backbones. But the following
developments merit special attention:

e Since the beginning of the millennium, we have been seeing aggressive deploy-
ment of broadband Internet access to homes—not only cable modems and DSL
but also fiber to the home, and now 5G fixed wireless as discussed in Section 1.2.
This high-speed Internet access has set the stage for a wealth of video applica-
tions, including the distribution of user-generated video (for example, YouTube),
on-demand streaming of movies and television shows (e.g., Netflix), and multi-
person video conference (e.g., Skype, Facetime, and Google Hangouts).

* The increasing ubiquity of high-speed wireless Internet access is not only making
it possible to remain constantly connected while on the move, but also enabling
new location-specific applications such as Yelp, Tinder, and Waz. The number of
wireless devices connecting to the Internet surpassed the number of wired devices
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in 2011. This high-speed wireless access has set the stage for the rapid emergence
of hand-held computers (iPhones, Androids, iPads, and so on), which enjoy con-
stant and untethered access to the Internet.

* Online social networks—such as Facebook, Instagram, Twitter, and WeChat
(hugely popular in China)—have created massive people networks on top of the
Internet. Many of these social networks are extensively used for messaging as
well as photo sharing. Many Internet users today “live” primarily within one or
more social networks. Through their APIs, the online social networks create plat-
forms for new networked applications, including mobile payments and distrib-
uted games.

* As discussed in Section 1.3.3, online service providers, such as Google and
Microsoft, have deployed their own extensive private networks, which not only
connect together their globally distributed data centers, but are used to bypass the
Internet as much as possible by peering directly with lower-tier ISPs. As a result,
Google provides search results and e-mail access almost instantaneously, as if
their data centers were running within one’s own computer.

*  Many Internet commerce companies are now running their applications in the
“cloud”—such as in Amazon’s EC2, in Microsoft’s Azure, or in the Alibaba
Cloud. Many companies and universities have also migrated their Internet
applications (e.g., e-mail and Web hosting) to the cloud. Cloud companies not
only provide applications scalable computing and storage environments, but
also provide the applications implicit access to their high-performance private
networks.

1.8 Summary

In this chapter, we’ve covered a tremendous amount of material! We’ve looked at
the various pieces of hardware and software that make up the Internet in particular
and computer networks in general. We started at the edge of the network, look-
ing at end systems and applications, and at the transport service provided to the
applications running on the end systems. We also looked at the link-layer tech-
nologies and physical media typically found in the access network. We then dove
deeper inside the network, into the network core, identifying packet switching and
circuit switching as the two basic approaches for transporting data through a tel-
ecommunication network, and we examined the strengths and weaknesses of each
approach. We also examined the structure of the global Internet, learning that the
Internet is a network of networks. We saw that the Internet’s hierarchical structure,
consisting of higher- and lower-tier ISPs, has allowed it to scale to include thou-
sands of networks.
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In the second part of this introductory chapter, we examined several topics cen-
tral to the field of computer networking. We first examined the causes of delay,
throughput and packet loss in a packet-switched network. We developed simple
quantitative models for transmission, propagation, and queuing delays as well as
for throughput; we’ll make extensive use of these delay models in the homework
problems throughout this book. Next we examined protocol layering and service
models, key architectural principles in networking that we will also refer back to
throughout this book. We also surveyed some of the more prevalent security attacks
in the Internet day. We finished our introduction to networking with a brief history
of computer networking. The first chapter in itself constitutes a mini-course in com-
puter networking.

So, we have indeed covered a tremendous amount of ground in this first chapter!
If you’re a bit overwhelmed, don’t worry. In the following chapters, we’ll revisit all
of these ideas, covering them in much more detail (that’s a promise, not a threat!).
At this point, we hope you leave this chapter with a still-developing intuition for the
pieces that make up a network, a still-developing command of the vocabulary of
networking (don’t be shy about referring back to this chapter), and an ever-growing
desire to learn more about networking. That’s the task ahead of us for the rest of this
book.

Road-Mapping This Book

Before starting any trip, you should always glance at a road map in order to
become familiar with the major roads and junctures that lie ahead. For the trip
we are about to embark on, the ultimate destination is a deep understanding of
the how, what, and why of computer networks. Our road map is the sequence of
chapters of this book:

Computer Networks and the Internet
Application Layer

Transport Layer

Network Layer: Data Plane
Network Layer: Control Plane

The Link Layer and LANs

Wireless and Mobile Networks
Security in Computer Networks

NN R LD =

Chapters 2 through 6 are the five core chapters of this book. You should notice
that these chapters are organized around the top four layers of the five-layer Internet
protocol. Further note that our journey will begin at the top of the Internet protocol
stack, namely, the application layer, and will work its way downward. The rationale
behind this top-down journey is that once we understand the applications, we can

SUMMARY
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understand the network services needed to support these applications. We can then,
in turn, examine the various ways in which such services might be implemented by
a network architecture. Covering applications early thus provides motivation for the
remainder of the text.

The second half of the book—Chapters 7 and 8—zooms in on two enor-
mously important (and somewhat independent) topics in modern computer net-
working. In Chapter 7, we examine wireless and mobile networks, including
wireless LANs (including WiFi and Bluetooth), Cellular networks (including
4G and 5G), and mobility. Chapter 8, which addresses security in computer net-
works, first looks at the underpinnings of encryption and network security, and
then we examine how the basic theory is being applied in a broad range of Inter-
net contexts.

Homework Problems and Questions

Chapter 1 Review Questions
SECTION 1.1

R1. What is the difference between a host and an end system? List several differ-
ent types of end systems. Is a Web server an end system?

R2. The word protocol is often used to describe diplomatic relations. How does
Wikipedia describe diplomatic protocol?

R3. Why are standards important for protocols?

SECTION 1.2
R4. List four access technologies. Classify each one as home access, enterprise
access, or wide-area wireless access.
RS5. Is HFC transmission rate dedicated or shared among users? Are collisions
possible in a downstream HFC channel? Why or why not?

R6. List the available residential access technologies in your city. For each
type of access, provide the advertised downstream rate, upstream rate, and
monthly price.

R7. What is the transmission rate of Ethernet LANs?
R8. What are some of the physical media that Ethernet can run over?

R9. HFC, DSL, and FTTH are all used for residential access. For each of
these access technologies, provide a range of transmission rates and
comment on whether the transmission rate is shared or dedicated.

R10. Describe the most popular wireless Internet access technologies today.
Compare and contrast them.
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SECTION 1.3

R11.

R12.

R13.

R14.

R15.

Suppose there is exactly one packet switch between a sending host and a
receiving host. The transmission rates between the sending host and the
switch and between the switch and the receiving host are R; and R,, respec-
tively. Assuming that the switch uses store-and-forward packet switching,
what is the total end-to-end delay to send a packet of length L? (Ignore queu-
ing, propagation delay, and processing delay.)

What advantage does a circuit-switched network have over a packet-switched net-
work? What advantages does TDM have over FDM in a circuit-switched network?

Suppose users share a 2 Mbps link. Also suppose each user transmits contin-
uously at 1 Mbps when transmitting, but each user transmits only 20 percent
of the time. (See the discussion of statistical multiplexing in Section 1.3.)

a. When circuit switching is used, how many users can be supported?

b. For the remainder of this problem, suppose packet switching is used. Why
will there be essentially no queuing delay before the link if two or fewer
users transmit at the same time? Why will there be a queuing delay if
three users transmit at the same time?

c. Find the probability that a given user is transmitting.

d. Suppose now there are three users. Find the probability that at any given
time, all three users are transmitting simultaneously. Find the fraction of
time during which the queue grows.

Why will two ISPs at the same level of the hierarchy often peer with each
other? How does an IXP earn money?

Some content providers have created their own networks. Describe Google’s
network. What motivates content providers to create these networks?

SECTION 1.4

R16.

R17.

R18.

Consider sending a packet from a source host to a destination host over a
fixed route. List the delay components in the end-to-end delay. Which of
these delays are constant and which are variable?

Visit the Transmission Versus Propagation Delay interactive animation at

the companion Web site. Among the rates, propagation delay, and packet
sizes available, find a combination for which the sender finishes transmitting
before the first bit of the packet reaches the receiver. Find another combina-
tion for which the first bit of the packet reaches the receiver before the sender
finishes transmitting.

How long does it take a packet of length 1,000 bytes to propagate over a
link of distance 2,500 km, propagation speed 2.5 + 10® m/s, and transmission
rate 2 Mbps? More generally, how long does it take a packet of length L to
propagate over a link of distance d, propagation speed s, and transmission
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R109.

R20.

R21.

rate R bps? Does this delay depend on packet length? Does this delay depend
on transmission rate?

Suppose Host A wants to send a large file to Host B. The path from Host A to Host
B has three links, of rates R; = 500 kbps, R, = 2 Mbps, and R; = 1 Mbps.

a. Assuming no other traffic in the network, what is the throughput for the
file transfer?

b. Suppose the file is 4 million bytes. Dividing the file size by the through-
put, roughly how long will it take to transfer the file to Host B?

c. Repeat (a) and (b), but now with R, reduced to 100 kbps.

Suppose end system A wants to send a large file to end system B. At a very
high level, describe how end system A creates packets from the file. When
one of these packets arrives to a router, what information in the packet does
the router use to determine the link onto which the packet is forwarded?
Why is packet switching in the Internet analogous to driving from one city to
another and asking directions along the way?

Visit the Queuing and Loss interactive animation at the companion Web site.
What is the maximum emission rate and the minimum transmission rate?
With those rates, what is the traffic intensity? Run the interactive animation
with these rates and determine how long it takes for packet loss to occur.
Then repeat the experiment a second time and determine again how long it
takes for packet loss to occur. Are the values different? Why or why not?

SECTION 1.5

R22.

R23.

R24.

R25.

List five tasks that a layer can perform. Is it possible that one (or more) of
these tasks could be performed by two (or more) layers?

What are the five layers in the Internet protocol stack? What are the principal
responsibilities of each of these layers?

What is an application-layer message? A transport-layer segment? A net-
work-layer datagram? A link-layer frame?

Which layers in the Internet protocol stack does a router process? Which lay-
ers does a link-layer switch process? Which layers does a host process?

SECTION 1.6

R26.
R27.
R28.

What is self-replicating malware?
Describe how a botnet can be created and how it can be used for a DDoS attack.

Suppose Alice and Bob are sending packets to each other over a computer
network. Suppose Trudy positions herself in the network so that she can
capture all the packets sent by Alice and send whatever she wants to Bob; she
can also capture all the packets sent by Bob and send whatever she wants to
Alice. List some of the malicious things Trudy can do from this position.
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Problems

PI1.

P2.

P3.

P4.

Design and describe an application-level protocol to be used between an
automatic teller machine and a bank’s centralized computer. Your protocol
should allow a user’s card and password to be verified, the account bal-

ance (which is maintained at the centralized computer) to be queried, and an
account withdrawal to be made (that is, money disbursed to the user). Your
protocol entities should be able to handle the all-too-common case in which
there is not enough money in the account to cover the withdrawal. Specify
your protocol by listing the messages exchanged and the action taken by the
automatic teller machine or the bank’s centralized computer on transmission
and receipt of messages. Sketch the operation of your protocol for the case of
a simple withdrawal with no errors, using a diagram similar to that in Figure 1.2.
Explicitly state the assumptions made by your protocol about the underlying
end-to-end transport service.

Equation 1.1 gives a formula for the end-to-end delay of sending one packet
of length L over N links of transmission rate R. Generalize this formula for
sending P such packets back-to-back over the N links.

Consider an application that transmits data at a steady rate (for example, the
sender generates an N-bit unit of data every k time units, where k is small
and fixed). Also, when such an application starts, it will continue running
for a relatively long period of time. Answer the following questions, briefly
justifying your answer:

a. Would a packet-switched network or a circuit-switched network be more
appropriate for this application? Why?

b. Suppose that a packet-switched network is used and the only traffic in
this network comes from such applications as described above. Further-
more, assume that the sum of the application data rates is less than the
capacities of each and every link. Is some form of congestion control
needed? Why?

Consider the circuit-switched network in Figure 1.13. Recall that there are
four circuits on each link. Label the four switches A, B, C, and D, going in
the clockwise direction.

a. What is the maximum number of simultaneous connections that can be in
progress at any one time in this network?

b. Suppose that all connections are between switches A and C. What is the
maximum number of simultaneous connections that can be in progress?

c. Suppose we want to make four connections between switches A and C,
and another four connections between switches B and D. Can we
route these calls through the four links to accommodate all eight
connections?
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P5. Review the car-caravan analogy in Section 1.4. Assume a propagation speed
of 100 km/hour.

a. Suppose the caravan travels 175 km, beginning in front of one tollbooth,
passing through a second tollbooth, and finishing just after a third toll-
booth. What is the end-to-end delay?

b. Repeat (a), now assuming that there are eight cars in the caravan instead
of ten.

u P6. This elementary problem begins to explore propagation delay and transmis-
‘ sion delay, two central concepts in data networking. Consider two hosts, A
Exoloring mropagation and B, connected by a single link of rate R bps. Suppose that the two hosts
:e:av and transmission are separated by m meters, and suppose the propagation speed along the link
lela! . . . .

Y is s meters/sec. Host A is to send a packet of size L bits to Host B.

a. Express the propagation delay, dy,, in terms of m and s.
b. Determine the transmission time of the packet, di;,,, in terms of L and R.

c. Ignoring processing and queuing delays, obtain an expression for the end-
to-end delay.

d. Suppose Host A begins to transmit the packet at time t = 0. At time t =
dirans» Where is the last bit of the packet?

€. Suppose dyp is greater than diyyys. At time ¢ = dypng, Where is the first
bit of the packet?

f. Suppose dyyop is less than dyng. At time 1 = diyyys, Where is the first bit of
the packet?

g. Suppose s = 2.5-10%, L = 1500 bytes, and R = 10 Mbps. Find the

distance m so that dyyy,,, equals dyap.

P7. In this problem, we consider sending real-time voice from Host A to Host B
over a packet-switched network (VoIP). Host A converts analog voice to a
digital 64 kbps bit stream on the fly. Host A then groups the bits into 56-byte
packets. There is one link between Hosts A and B; its transmission rate is
10 Mbps and its propagation delay is 10 msec. As soon as Host A gathers a
packet, it sends it to Host B. As soon as Host B receives an entire packet, it
converts the packet’s bits to an analog signal. How much time elapses from
the time a bit is created (from the original analog signal at Host A) until the
bit is decoded (as part of the analog signal at Host B)?

P8. Suppose users share a 10 Mbps link. Also suppose each user requires 200 kbps
when transmitting, but each user transmits only 10 percent of the time. (See
the discussion of packet switching versus circuit switching in Section 1.3.)

a. When circuit switching is used, how many users can be supported?

b. For the remainder of this problem, suppose packet switching is used. Find
the probability that a given user is transmitting.
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P10.

P11.

P12.

P13.

PROBLEMS

c. Suppose there are 120 users. Find the probability that at any given time,
exactly n users are transmitting simultaneously. (Hint: Use the binomial
distribution.)

d. Find the probability that there are 51 or more users transmitting
simultaneously.

Consider the discussion in Section 1.3 of packet switching versus circuit switch-
ing in which an example is provided with a 1 Mbps link. Users are generating
data at a rate of 100 kbps when busy, but are busy generating data only with
probability p = 0.1. Suppose that the 1 Mbps link is replaced by a 1 Gbps link.

a. What is N, the maximum number of users that can be supported simulta-
neously under circuit switching?

b. Now consider packet switching and a user population of M users. Give a
formula (in terms of p, M, N) for the probability that more than N users
are sending data.

Consider a packet of length L that begins at end system A and travels over
three links to a destination end system. These three links are connected by
two packet switches. Let d;, s;, and R; denote the length, propagation speed,
and the transmission rate of link i, for i = 1, 2, 3. The packet switch delays
each packet by dj,.. Assuming no queuing delays, in terms of &, s;, R;,

(i = 1,2, 3), and L, what is the total end-to-end delay for the packet? Sup-
pose now the packet is 1,500 bytes, the propagation speed on all three links is
2.5 - 10%m/s, the transmission rates of all three links are 2.5 Mbps, the packet
switch processing delay is 3 msec, the length of the first link is 5,000 km, the
length of the second link is 4,000 km, and the length of the last link is 1,000
km. For these values, what is the end-to-end delay?

In the above problem, suppose R} = R, = R; = R and dj,, = 0. Further
suppose that the packet switch does not store-and-forward packets but instead
immediately transmits each bit it receives before waiting for the entire packet
to arrive. What is the end-to-end delay?

A packet switch receives a packet and determines the outbound link to which
the packet should be forwarded. When the packet arrives, one other packet is
halfway done being transmitted on this outbound link and four other packets are
waiting to be transmitted. Packets are transmitted in order of arrival. Suppose
all packets are 1,500 bytes and the link rate is 2.5 Mbps. What is the queuing
delay for the packet? More generally, what is the queuing delay when all packets
have length L, the transmission rate is R, x bits of the currently-being-transmitted
packet have been transmitted, and n packets are already in the queue?

(a) Suppose N packets arrive simultaneously to a link at which no packets
are currently being transmitted or queued. Each packet is of length L and
the link has transmission rate R. What is the average queuing delay for
the N packets?
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P14.

PI15.

P16.

P17.

P18.

(b) Now suppose that N such packets arrive to the link every LN/R seconds.
What is the average queuing delay of a packet?

Consider the queuing delay in a router buffer. Let I denote traffic intensity;
that is, I = La/R. Suppose that the queuing delay takes the form IL/R (1 — I)
for I < 1.

a. Provide a formula for the total delay, that is, the queuing delay plus the
transmission delay.

b. Plot the total delay as a function of L/R.

Let a denote the rate of packets arriving at a link in packets/sec, and let u
denote the link’s transmission rate in packets/sec. Based on the formula for
the total delay (i.e., the queuing delay plus the transmission delay) derived
in the previous problem, derive a formula for the total delay in terms of a
and u.

Consider a router buffer preceding an outbound link. In this problem, you
will use Little’s formula, a famous formula from queuing theory. Let N
denote the average number of packets in the buffer plus the packet being
transmitted. Let a denote the rate of packets arriving at the link. Let d denote
the average total delay (i.e., the queuing delay plus the transmission delay)
experienced by a packet. Little’s formula is N = a - d. Suppose that on
average, the buffer contains 100 packets, and the average packet queuing
delay is 20 msec. The link’s transmission rate is 100 packets/sec. Using
Little’s formula, what is the average packet arrival rate, assuming there is

no packet loss?

a. Generalize Equation 1.2 in Section 1.4.3 for heterogeneous processing
rates, transmission rates, and propagation delays.

b. Repeat (a), but now also suppose that there is an average queuing delay of

dqueue at €ach node.

Perform a Traceroute between source and destination on the same continent
at three different hours of the day.

a. Find the average and standard deviation of the round-trip delays at each of
the three hours.

b. Find the number of routers in the path at each of the three hours. Did the
paths change during any of the hours?

c. Try to identify the number of ISP networks that the Traceroute packets
pass through from source to destination. Routers with similar names and/
or similar IP addresses should be considered as part of the same ISP. In
your experiments, do the largest delays occur at the peering interfaces
between adjacent ISPs?

d. Repeat the above for a source and destination on different continents.
Compare the intra-continent and inter-continent results.
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P20.

P21.

P22.

P23.

P24.

PROBLEMS

Metcalfe’s law states the value of a computer network is proportional to

the square of the number of connected users of the system. Let n denote the
number of users in a computer network. Assuming each user sends one mes-
sage to each of the other users, how many messages will be sent? Does your
answer support Metcalfe’s law?

Consider the throughput example corresponding to Figure 1.20(b). Now
suppose that there are M client-server pairs rather than 10. Denote R, R,
and R for the rates of the server links, client links, and network link. Assume
all other links have abundant capacity and that there is no other traffic in the
network besides the traffic generated by the M client-server pairs. Derive a
general expression for throughput in terms of R, R., R, and M.

Consider Figure 1.19(b). Now suppose that there are M paths between the
server and the client. No two paths share any link. Pathk (k = 1, ..., M)
consists of N links with transmission rates R’]‘, RS, ..., R’,‘\,. If the server can
only use one path to send data to the client, what is the maximum throughput
that the server can achieve? If the server can use all M paths to send data,
what is the maximum throughput that the server can achieve?

Consider Figure 1.19(b). Suppose that each link between the server and the
client has a packet loss probability p, and the packet loss probabilities for
these links are independent. What is the probability that a packet (sent by the
server) is successfully received by the receiver? If a packet is lost in the path
from the server to the client, then the server will re-transmit the packet. On
average, how many times will the server re-transmit the packet in order for
the client to successfully receive the packet?

Consider Figure 1.19(a). Assume that we know the bottleneck link along the
path from the server to the client is the first link with rate R; bits/sec. Suppose
we send a pair of packets back to back from the server to the client, and there
is no other traffic on this path. Assume each packet of size L bits, and both

links have the same propagation delay dy;,.

a. What is the packet inter-arrival time at the destination? That is, how much
time elapses from when the last bit of the first packet arrives until the last
bit of the second packet arrives?

b. Now assume that the second link is the bottleneck link (i.e., R. < Ry).Is
it possible that the second packet queues at the input queue of the second
link? Explain. Now suppose that the server sends the second packet T
seconds after sending the first packet. How large must 7 be to ensure no
queuing before the second link? Explain.

Suppose you would like to urgently deliver 50 terabytes data from Boston to
Los Angeles. You have available a 100 Mbps dedicated link for data transfer.
Would you prefer to transmit the data via this link or instead use FedEx over-
night delivery? Explain.
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P25.

P26.

P27.

P28.

P29.

Suppose two hosts, A and B, are separated by 20,000 kilometers and are con-
nected by a direct link of R = 5 Mbps. Suppose the propagation speed over
the link is 2.5 « 10® meters/sec.

a. Calculate the bandwidth-delay product, R * dpop.
b. Consider sending a file of 800,000 bits from Host A to Host B. Suppose
the file is sent continuously as one large message. What is the maximum

number of bits that will be in the link at any given time?
c. Provide an interpretation of the bandwidth-delay product.

d. What is the width (in meters) of a bit in the link? Is it longer than a
football field?

e. Derive a general expression for the width of a bit in terms of the
propagation speed s, the transmission rate R, and the length of the
link m.

Referring to problem P24, suppose we can modify R. For what value of R is
the width of a bit as long as the length of the link?

Consider problem P24 but now with a link of R = 500 Mbps.

a. Calculate the bandwidth-delay product, R * dpqp.
b. Consider sending a file of 800,000 bits from Host A to Host B. Suppose
the file is sent continuously as one big message. What is the maximum

number of bits that will be in the link at any given time?
c. What is the width (in meters) of a bit in the link?
Refer again to problem P24.
a. How long does it take to send the file, assuming it is sent continuously?

b. Suppose now the file is broken up into 20 packets with each packet
containing 40,000 bits. Suppose that each packet is acknowledged by
the receiver and the transmission time of an acknowledgment packet is
negligible. Finally, assume that the sender cannot send a packet until the
preceding one is acknowledged. How long does it take to send the file?

c. Compare the results from (a) and (b).

Suppose there is a 10 Mbps microwave link between a geostationary
satellite and its base station on Earth. Every minute the satellite takes a digi-
tal photo and sends it to the base station. Assume a propagation speed

of 2.4 - 10® meters/sec.

a. What is the propagation delay of the link?

b. What is the bandwidth-delay product, R * d,,?

c. Let x denote the size of the photo. What is the minimum value of x for the
microwave link to be continuously transmitting?



P30. Consider the airline travel analogy in our discussion of layering in Section 1.5,
and the addition of headers to protocol data units as they flow down the proto-
col stack. Is there an equivalent notion of header information that is added to
passengers and baggage as they move down the airline protocol stack?

P31. Inmodern packet-switched networks, including the Internet, the source host seg-
ments long, application-layer messages (for example, an image or a music file)
into smaller packets and sends the packets into the network. The receiver then
reassembles the packets back into the original message. We refer to this process as
message segmentation. Figure 1.27 illustrates the end-to-end transport of a message
with and without message segmentation. Consider a message that is 10° bits
long that is to be sent from source to destination in Figure 1.27. Suppose each
link in the figure is 5 Mbps. Ignore propagation, queuing, and processing delays.

a. Consider sending the message from source to destination without message
segmentation. How long does it take to move the message from the source
host to the first packet switch? Keeping in mind that each switch uses
store-and-forward packet switching, what is the total time to move the
message from source host to destination host?

b. Now suppose that the message is segmented into 100 packets, with each
packet being 10,000 bits long. How long does it take to move the first
packet from source host to the first switch? When the first packet is being
sent from the first switch to the second switch, the second packet is being
sent from the source host to the first switch. At what time will the second
packet be fully received at the first switch?

c. How long does it take to move the file from source host to destination
host when message segmentation is used? Compare this result with your
answer in part (a) and comment.

== Message (=<3

= \ Sy .t =
a. Source Packet switch Packet switch Destination
Packet
% ‘ | | ‘ ‘ _—’?
b. Source Packet switch Packet switch Destination

Figure 1.27 ¢+ End+o-end message transport: (a) without message
segmentation; (b) with message segmentation

PROBLEMS
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d. In addition to reducing delay, what are reasons to use message
segmentation?

e. Discuss the drawbacks of message segmentation.

P32. Experiment with the Message Segmentation interactive animation at the book’s
Web site. Do the delays in the interactive animation correspond to the delays
in the previous problem? How do link propagation delays affect the overall
end-to-end delay for packet switching (with message segmentation) and for
message switching?

P33. Consider sending a large file of F bits from Host A to Host B. There are three
links (and two switches) between A and B, and the links are uncongested
(that is, no queuing delays). Host A segments the file into segments of S bits
each and adds 80 bits of header to each segment, forming packets of L = 80 +
S bits. Each link has a transmission rate of R bps. Find the value of S that
minimizes the delay of moving the file from Host A to Host B. Disregard
propagation delay.

P34. Skype offers a service that allows you to make a phone call from a PC to an
ordinary phone. This means that the voice call must pass through both the
Internet and through a telephone network. Discuss how this might be done.

Wireshark Lab

“Tell me and I forget. Show me and I remember. Involve me and I understand.”
Chinese proverb

One’s understanding of network protocols can often be greatly deepened by seeing
them in action and by playing around with them—observing the sequence of mes-
sages exchanged between two protocol entities, delving into the details of protocol
operation, causing protocols to perform certain actions, and observing these actions
and their consequences. This can be done in simulated scenarios or in a real network
environment such as the Internet. The interactive animations at the textbook Web site
take the first approach. In the Wireshark labs, we’ll take the latter approach. You’ll
run network applications in various scenarios using a computer on your desk, at
home, or in a lab. You’ll observe the network protocols in your computer, interacting
and exchanging messages with protocol entities executing elsewhere in the Inter-
net. Thus, you and your computer will be an integral part of these live labs. You’ll
observe—and you’ll learn—by doing.

The basic tool for observing the messages exchanged between executing pro-
tocol entities is called a packet sniffer. As the name suggests, a packet sniffer pas-
sively copies (sniffs) messages being sent from and received by your computer; it
also displays the contents of the various protocol fields of these captured messages.
A screenshot of the Wireshark packet sniffer is shown in Figure 1.28. Wireshark is a
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Figure 1.28 ¢ A Wireshark screenshot (Wireshark screenshot reprinted
by permission of the Wireshark Foundation.)

free packet sniffer that runs on Windows, Linux/Unix, and Mac computers. Through-
out the textbook, you will find Wireshark labs that allow you to explore a number
of the protocols studied in the chapter. In this first Wireshark lab, you’ll obtain and
install a copy of Wireshark, access a Web site, and capture and examine the protocol
messages being exchanged between your Web browser and the Web server.

You can find full details about this first Wireshark lab (including instructions
about how to obtain and install Wireshark) at the Web site www.pearson.com/
cs-resources.



AN INTERVIEW WITH...

Leonard Kleinrock

Lleonard Kleinrock is a professor of computer science at the University
of California, Los Angeles. In 1969, his computer at UCLA became
the first node of the Internet. His creation of the mathematical theory
of packetswifching principles in 1961 became the technology behind
the Infemet. He received his B.E.E. from the City College of New York

(CCNY) and his masters and PhD in electrical engineering from MIT.

What made you decide to specialize in networking/Internet technology?

As a PhD student at MIT in 1959, I looked around and found that most of my classmates
were doing research in the area of information theory and coding theory that had been
established by the great researcher, Claude Shannon. I judged that he had solved most of
the important problems already. The research problems that were left were hard and seemed
to me to be of lesser consequence. So I decided to launch out in a new area that no one
else had yet conceived of. Happily, at MIT I was surrounded by many computers, and it
was clear to me that, sooner or later, these machines would need to communicate with each
other. At the time, there was no effective way for them to do so and that the solution to this
important problem would have impact. I had an approach to this problem and so, for my
PhD research, I decided to create a mathematical theory to model, evaluate, design and
optimize efficient and reliable data networks.

What was your first job in the computer industry? What did it entail?

I went to the evening session at CCNY from 1951 to 1957 for my bachelor’s degree

in electrical engineering. During the day, I worked first as a technician and then as an
electrical engineer at a small, industrial electronics firm called Photobell. While there, 1
introduced digital technology to their product line. Essentially, we were using photoelec-
tric devices to detect the presence of certain items (boxes, people, etc.) and the use of a
circuit known then as a bistable multivibrator was just what we needed to bring digital
processing into this field of detection. These circuits happen to be the building blocks for
computers, and have come to be known as flip-flops or switches in today’s vernacular.

What was going through your mind when you sent the first host-to-host message (from
UCLA to the Stanford Research Institute)?

Frankly, we had no idea of the importance of that event. We had not prepared a special
message of historic significance, as did so many inventors of the past (Samuel Morse with
“What hath God wrought.” or Alexander Graham Bell with “Watson, come here! I want you.”
or Neal Armstrong with “That’s one small step for a man, one giant leap for mankind.”)
Those guys were smart! They understood media and public relations. All we wanted to do
was to demonstrate our ability to remotely login to the SRI computer. So we typed the “L”,

Courtesy of Leonard Kleinrock



which was correctly received, we typed the “0” which was correctly received, and then we
typed the “g” which caused the SRI host computer to crash! So, it turned out that our mes-
sage was the shortest and perhaps the most prophetic message ever, namely “Lo!” as in
“Lo and behold!”

Earlier that year, I was quoted in a UCLA press release saying that once the network
was up and running, it would be possible to gain access to computer utilities from our
homes and offices as easily as we gain access to electricity and telephone connectivity. So
my vision at that time was that the Internet would be ubiquitous, always on, always avail-
able, anyone with any device could connect from any location, and it would be invisible.
However, I never anticipated that my 99-year-old mother would use the Internet at the same
time that my 5 year-old granddaughter was—and indeed she did!

What is your vision for the future of networking?

The easy part of the vision is to predict the infrastructure itself. I anticipate that we will see
considerable deployment of wireless and mobile devices in smart spaces to produce what
I like to refer to as the Invisible Internet. This step will enable us to move out from the
netherworld of cyberspace to the physical world of smart spaces. Our environments (desks,
walls, vehicles, watches, belts, fingernails, bodies and so on) will come alive with technol-
ogy, through actuators, sensors, logic, processing, storage, cameras, microphones, speak-
ers, displays, and communication. This embedded technology will allow our environment
to provide the IP services wherever and whenever we want. When I walk into a room, the
room will know I entered. I will be able to communicate with my environment naturally,
as in spoken English, haptics, gestures, and eventually through brain-Internet interfaces;
my requests will generate replies that present Web pages to me from wall displays, through
my eyeglasses, as speech, holograms, and so forth. Looking a bit further out, I see a net-
working future that includes the following additional key components. I see customized
intelligent software agents deployed across the network whose function it is to mine data,
act on that data, observe trends, and carry out tasks dynamically and adaptively. I see the
deployment of blockchain technology that provides irrefutable, immutable distributed
ledgers coupled with reputation systems that provide credibility to the contents and func-
tionality. I see considerably more network traffic generated not so much by humans, but
by the embedded devices, the intelligent software agents and the distributed ledgers. I see
large collections of self-organizing systems controlling this vast, fast network. I see huge
amounts of information flashing across this network instantaneously with this information
undergoing enormous processing and filtering. The Invisible Internet will essentially be
a pervasive global nervous system . I see all these things and more as we move headlong
through the twenty-first century.

The harder part of the vision is to predict the applications and services, which have
consistently surprised us in dramatic ways (e-mail, search technologies, the World Wide
Web, blogs, peer-to-peer networks, social networks, user generated content, sharing of
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music, photos, and videos, etc.). These applications have “come of the blue”, sudden,
unanticipated and explosive. What a wonderful world for the next generation to explore!

What people have inspired you professionally?

By far, it was Claude Shannon from MIT, a brilliant researcher who had the ability to relate
his mathematical ideas to the physical world in highly intuitive ways. He was a superb
member of my PhD thesis committee.

Do you have any advice for students entering the networking/Internet field?

The Internet and all that it enables is a vast new frontier, continuously full of amazing
challenges. There is room for great innovation. Don’t be constrained by today’s technology.
Reach out and imagine what could be and then make it happen.



CHAPTER

Application
Layer

Network applications are the raisons d’étre of a computer network—if we couldn’t
conceive of any useful applications, there wouldn’t be any need for networking infra-
structure and protocols to support them. Since the Internet’s inception, numerous useful
and entertaining applications have indeed been created. These applications have been the
driving force behind the Internet’s success, motivating people in homes, schools, govern-
ments, and businesses to make the Internet an integral part of their daily activities.
Internet applications include the classic text-based applications that became pop-
ular in the 1970s and 1980s: text e-mail, remote access to computers, file transfers, and
newsgroups. They include the killer application of the mid-1990s, the World Wide
Web, encompassing Web surfing, search, and electronic commerce. Since the begin-
ning of new millennium, new and highly compelling applications continue to emerge,
including voice over IP and video conferencing such as Skype, Facetime, and Google
Hangouts; user generated video such as YouTube and movies on demand such as
Netflix; and multiplayer online games such as Second Life and World of Warcraft.
During this same period, we have seen the emergence of a new generation of social
networking applications—such as Facebook, Instagram, and Twitter—which have
created human networks on top of the Internet’s network or routers and communi-
cation links. And most recently, along with the arrival of the smartphone and the
ubiquity of 4G/5G wireless Internet access, there has been a profusion of location
based mobile apps, including popular check-in, dating, and road-traffic forecasting
apps (such as Yelp, Tinder, and Waz), mobile payment apps (such as WeChat and
Apple Pay) and messaging apps (such as WeChat and WhatsApp). Clearly, there has
been no slowing down of new and exciting Internet applications. Perhaps some of
the readers of this text will create the next generation of killer Internet applications!
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In this chapter, we study the conceptual and implementation aspects of network
applications. We begin by defining key application-layer concepts, including net-
work services required by applications, clients and servers, processes, and trans-
port-layer interfaces. We examine several network applications in detail, including the
Web, e-mail, DNS, peer-to-peer (P2P) file distribution, and video streaming. We then
cover network application development, over both TCP and UDP. In particular, we
study the socket interface and walk through some simple client-server applications
in Python. We also provide several fun and interesting socket programming assign-
ments at the end of the chapter.

The application layer is a particularly good place to start our study of protocols.
It’s familiar ground. We’re acquainted with many of the applications that rely on
the protocols we’ll study. It will give us a good feel for what protocols are all about
and will introduce us to many of the same issues that we’ll see again when we study
transport, network, and link layer protocols.

2.1 Principles of Network Applications

Suppose you have an idea for a new network application. Perhaps this application
will be a great service to humanity, or will please your professor, or will bring you
great wealth, or will simply be fun to develop. Whatever the motivation may be, let’s
now examine how you transform the idea into a real-world network application.

At the core of network application development is writing programs that run on
different end systems and communicate with each other over the network. For exam-
ple, in the Web application there are two distinct programs that communicate with
each other: the browser program running in the user’s host (desktop, laptop, tablet,
smartphone, and so on); and the Web server program running in the Web server host.
As another example, in a Video on Demand application such as Netflix (see Sec-
tion 2.6), there is a Netflix-provided program running on the user’s smartphone, tablet,
or computer; and a Netflix server program running on the Netflix server host. Servers
often (but certainly not always) are housed in a data center, as shown in Figure 2.1.

Thus, when developing your new application, you need to write software that
will run on multiple end systems. This software could be written, for example, in
C, Java, or Python. Importantly, you do not need to write software that runs on net-
work-core devices, such as routers or link-layer switches. Even if you wanted to
write application software for these network-core devices, you wouldn’t be able to
do so. As we learned in Chapter 1, and as shown earlier in Figure 1.24, network-core
devices do not function at the application layer but instead function at lower layers—
specifically at the network layer and below. This basic design—namely, confining
application software to the end systems—as shown in Figure 2.1, has facilitated the
rapid development and deployment of a vast array of network applications.
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2.1.1 Network Application Architectures

Before diving into software coding, you should have a broad architectural plan for
your application. Keep in mind that an application’s architecture is distinctly differ-
ent from the network architecture (e.g., the five-layer Internet architecture discussed
in Chapter 1). From the application developer’s perspective, the network architec-
ture is fixed and provides a specific set of services to applications. The application
architecture, on the other hand, is designed by the application developer and dic-
tates how the application is structured over the various end systems. In choosing
the application architecture, an application developer will likely draw on one of the
two predominant architectural paradigms used in modern network applications: the
client-server architecture or the peer-to-peer (P2P) architecture.

In a client-server architecture, there is an always-on host, called the server,
which services requests from many other hosts, called clients. A classic example
is the Web application for which an always-on Web server services requests from
browsers running on client hosts. When a Web server receives a request for an object
from a client host, it responds by sending the requested object to the client host. Note
that with the client-server architecture, clients do not directly communicate with each
other; for example, in the Web application, two browsers do not directly communi-
cate. Another characteristic of the client-server architecture is that the server has a
fixed, well-known address, called an IP address (which we’ll discuss soon). Because
the server has a fixed, well-known address, and because the server is always on, a cli-
ent can always contact the server by sending a packet to the server’s IP address. Some
of the better-known applications with a client-server architecture include the Web,
FTP, Telnet, and e-mail. The client-server architecture is shown in Figure 2.2(a).

Often in a client-server application, a single-server host is incapable of keep-
ing up with all the requests from clients. For example, a popular social-networking
site can quickly become overwhelmed if it has only one server handling all of its
requests. For this reason, a data center, housing a large number of hosts, is often
used to create a powerful virtual server. The most popular Internet services—such
as search engines (e.g., Google, Bing, Baidu), Internet commerce (e.g., Amazon,
eBay, Alibaba), Web-based e-mail (e.g., Gmail and Yahoo Mail), social media (e.g.,
Facebook, Instagram, Twitter, and WeChat)—run in one or more data centers. As
discussed in Section 1.3.3, Google has 19 data centers distributed around the world,
which collectively handle search, YouTube, Gmail, and other services. A data center
can have hundreds of thousands of servers, which must be powered and maintained.
Additionally, the service providers must pay recurring interconnection and band-
width costs for sending data from their data centers.

In a P2P architecture, there is minimal (or no) reliance on dedicated servers in
data centers. Instead the application exploits direct communication between pairs of
intermittently connected hosts, called peers. The peers are not owned by the service
provider, but are instead desktops and laptops controlled by users, with most of the
peers residing in homes, universities, and offices. Because the peers communicate
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a. Client-server architecture b. Peer-to-peer architecture

Figure 2.2 + (a) Clientserver architecture; (b) P2P architecture

without passing through a dedicated server, the architecture is called peer-to-peer.
An example of a popular P2P application is the file-sharing application BitTorrent.

One of the most compelling features of P2P architectures is their self-
scalability. For example, in a P2P file-sharing application, although each peer
generates workload by requesting files, each peer also adds service capacity to the
system by distributing files to other peers. P2P architectures are also cost effective,
since they normally don’t require significant server infrastructure and server band-
width (in contrast with clients-server designs with datacenters). However, P2P appli-
cations face challenges of security, performance, and reliability due to their highly
decentralized structure.

2.1.2 Processes Communicating

Before building your network application, you also need a basic understanding of
how the programs, running in multiple end systems, communicate with each other.
In the jargon of operating systems, it is not actually programs but processes that
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communicate. A process can be thought of as a program that is running within an end
system. When processes are running on the same end system, they can communicate
with each other with interprocess communication, using rules that are governed by
the end system’s operating system. But in this book, we are not particularly interested
in how processes in the same host communicate, but instead in how processes run-
ning on different hosts (with potentially different operating systems) communicate.

Processes on two different end systems communicate with each other by
exchanging messages across the computer network. A sending process creates and
sends messages into the network; a receiving process receives these messages and
possibly responds by sending messages back. Figure 2.1 illustrates that processes
communicating with each other reside in the application layer of the five-layer pro-
tocol stack.

Client and Server Processes

A network application consists of pairs of processes that send messages to each
other over a network. For example, in the Web application a client browser process
exchanges messages with a Web server process. In a P2P file-sharing system, a file
is transferred from a process in one peer to a process in another peer. For each pair of
communicating processes, we typically label one of the two processes as the client
and the other process as the server. With the Web, a browser is a client process and
a Web server is a server process. With P2P file sharing, the peer that is downloading
the file is labeled as the client, and the peer that is uploading the file is labeled as
the server.

You may have observed that in some applications, such as in P2P file sharing,
a process can be both a client and a server. Indeed, a process in a P2P file-sharing
system can both upload and download files. Nevertheless, in the context of any given
communication session between a pair of processes, we can still label one process
as the client and the other process as the server. We define the client and server pro-
cesses as follows:

In the context of a communication session between a pair of processes, the pro-
cess that initiates the communication (that is, initially contacts the other process
at the beginning of the session) is labeled as the client. The process that waits to
be contacted to begin the session is the server.

In the Web, a browser process initializes contact with a Web server process;
hence the browser process is the client and the Web server process is the server. In
P2P file sharing, when Peer A asks Peer B to send a specific file, Peer A is the cli-
ent and Peer B is the server in the context of this specific communication session.
When there’s no confusion, we’ll sometimes also use the terminology “client side
and server side of an application.” At the end of this chapter, we’ll step through sim-
ple code for both the client and server sides of network applications.
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The Interface Between the Process and the Computer Network

As noted above, most applications consist of pairs of communicating processes, with
the two processes in each pair sending messages to each other. Any message sent
from one process to another must go through the underlying network. A process
sends messages into, and receives messages from, the network through a software
interface called a socket. Let’s consider an analogy to help us understand processes
and sockets. A process is analogous to a house and its socket is analogous to its door.
When a process wants to send a message to another process on another host, it shoves
the message out its door (socket). This sending process assumes that there is a trans-
portation infrastructure on the other side of its door that will transport the message to
the door of the destination process. Once the message arrives at the destination host,
the message passes through the receiving process’s door (socket), and the receiving
process then acts on the message.

Figure 2.3 illustrates socket communication between two processes that com-
municate over the Internet. (Figure 2.3 assumes that the underlying transport protocol
used by the processes is the Internet’s TCP protocol.) As shown in this figure, a socket
is the interface between the application layer and the transport layer within a host. It
is also referred to as the Application Programming Interface (API) between the
application and the network, since the socket is the programming interface with which
network applications are built. The application developer has control of everything on
the application-layer side of the socket but has little control of the transport-layer side
of the socket. The only control that the application developer has on the transport-
layer side is (1) the choice of transport protocol and (2) perhaps the ability to fix a few
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transport-layer parameters such as maximum buffer and maximum segment sizes (to
be covered in Chapter 3). Once the application developer chooses a transport protocol
(if a choice is available), the application is built using the transport-layer services
provided by that protocol. We’ll explore sockets in some detail in Section 2.7.

Addressing Processes

In order to send postal mail to a particular destination, the destination needs to have
an address. Similarly, in order for a process running on one host to send packets to
a process running on another host, the receiving process needs to have an address.
To identify the receiving process, two pieces of information need to be specified:
(1) the address of the host and (2) an identifier that specifies the receiving process in
the destination host.

In the Internet, the host is identified by its IP address. We’ll discuss IP addresses
in great detail in Chapter 4. For now, all we need to know is that an IP address is a 32-bit
quantity that we can think of as uniquely identifying the host. In addition to know-
ing the address of the host to which a message is destined, the sending process must
also identify the receiving process (more specifically, the receiving socket) running in
the host. This information is needed because in general a host could be running many
network applications. A destination port number serves this purpose. Popular applica-
tions have been assigned specific port numbers. For example, a Web server is identified
by port number 80. A mail server process (using the SMTP protocol) is identified by
port number 25. A list of well-known port numbers for all Internet standard protocols
can be found at www.iana.org. We’ll examine port numbers in detail in Chapter 3.

2.1.3 Transport Services Available to Applications

Recall that a socket is the interface between the application process and the trans-
port-layer protocol. The application at the sending side pushes messages through the
socket. At the other side of the socket, the transport-layer protocol has the responsi-
bility of getting the messages to the socket of the receiving process.

Many networks, including the Internet, provide more than one transport-layer
protocol. When you develop an application, you must choose one of the available
transport-layer protocols. How do you make this choice? Most likely, you would
study the services provided by the available transport-layer protocols, and then pick
the protocol with the services that best match your application’s needs. The situation
is similar to choosing either train or airplane transport for travel between two cities.
You have to choose one or the other, and each transportation mode offers different
services. (For example, the train offers downtown pickup and drop-off, whereas the
plane offers shorter travel time.)

What are the services that a transport-layer protocol can offer to applications
invoking it? We can broadly classify the possible services along four dimensions:
reliable data transfer, throughput, timing, and security.
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Reliable Data Transfer

As discussed in Chapter 1, packets can get lost within a computer network. For exam-
ple, a packet can overflow a buffer in a router, or can be discarded by a host or router
after having some of its bits corrupted. For many applications—such as electronic
mail, file transfer, remote host access, Web document transfers, and financial appli-
cations—data loss can have devastating consequences (in the latter case, for either
the bank or the customer!). Thus, to support these applications, something has to be
done to guarantee that the data sent by one end of the application is delivered cor-
rectly and completely to the other end of the application. If a protocol provides such
a guaranteed data delivery service, it is said to provide reliable data transfer. One
important service that a transport-layer protocol can potentially provide to an applica-
tion is process-to-process reliable data transfer. When a transport protocol provides
this service, the sending process can just pass its data into the socket and know with
complete confidence that the data will arrive without errors at the receiving process.

When a transport-layer protocol doesn’t provide reliable data transfer, some of
the data sent by the sending process may never arrive at the receiving process. This
may be acceptable for loss-tolerant applications, most notably multimedia applica-
tions such as conversational audio/video that can tolerate some amount of data loss.
In these multimedia applications, lost data might result in a small glitch in the audio/
video—not a crucial impairment.

Throughput

In Chapter 1, we introduced the concept of available throughput, which, in the
context of a communication session between two processes along a network path,
is the rate at which the sending process can deliver bits to the receiving process.
Because other sessions will be sharing the bandwidth along the network path, and
because these other sessions will be coming and going, the available throughput
can fluctuate with time. These observations lead to another natural service that a
transport-layer protocol could provide, namely, guaranteed available throughput at
some specified rate. With such a service, the application could request a guaranteed
throughput of r bits/sec, and the transport protocol would then ensure that the avail-
able throughput is always at least r bits/sec. Such a guaranteed throughput service
would appeal to many applications. For example, if an Internet telephony applica-
tion encodes voice at 32 kbps, it needs to send data into the network and have data
delivered to the receiving application at this rate. If the transport protocol cannot
provide this throughput, the application would need to encode at a lower rate (and
receive enough throughput to sustain this lower coding rate) or may have to give
up, since receiving, say, half of the needed throughput is of little or no use to this
Internet telephony application. Applications that have throughput requirements are
said to be bandwidth-sensitive applications. Many current multimedia applications
are bandwidth sensitive, although some multimedia applications may use adaptive
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coding techniques to encode digitized voice or video at a rate that matches the cur-
rently available throughput.

While bandwidth-sensitive applications have specific throughput requirements,
elastic applications can make use of as much, or as little, throughput as happens to
be available. Electronic mail, file transfer, and Web transfers are all elastic applica-
tions. Of course, the more throughput, the better. There’s an adage that says that one
cannot be too rich, too thin, or have too much throughput!

Timing

A transport-layer protocol can also provide timing guarantees. As with throughput
guarantees, timing guarantees can come in many shapes and forms. An example
guarantee might be that every bit that the sender pumps into the socket arrives
at the receiver’s socket no more than 100 msec later. Such a service would be
appealing to interactive real-time applications, such as Internet telephony, virtual
environments, teleconferencing, and multiplayer games, all of which require tight
timing constraints on data delivery in order to be effective, see [Gauthier 1999;
Ramjee 1994]. Long delays in Internet telephony, for example, tend to result in
unnatural pauses in the conversation; in a multiplayer game or virtual interactive
environment, a long delay between taking an action and seeing the response from
the environment (for example, from another player at the end of an end-to-end con-
nection) makes the application feel less realistic. For non-real-time applications,
lower delay is always preferable to higher delay, but no tight constraint is placed
on the end-to-end delays.

Security

Finally, a transport protocol can provide an application with one or more security
services. For example, in the sending host, a transport protocol can encrypt all data
transmitted by the sending process, and in the receiving host, the transport-layer pro-
tocol can decrypt the data before delivering the data to the receiving process. Such a
service would provide confidentiality between the two processes, even if the data is
somehow observed between sending and receiving processes. A transport protocol
can also provide other security services in addition to confidentiality, including data
integrity and end-point authentication, topics that we’ll cover in detail in Chapter 8.

2.1.4 Transport Services Provided by the Internet

Up until this point, we have been considering transport services that a computer net-
work could provide in general. Let’s now get more specific and examine the type of
transport services provided by the Internet. The Internet (and, more generally, TCP/
IP networks) makes two transport protocols available to applications, UDP and TCP.
When you (as an application developer) create a new network application for the
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Application Data Loss Throughput Time-Sensitive
File transfer/download No loss Hlastic No

E-moil No loss Elastic No

Web documents No loss Hlastic (few Kbps) No

Internet telephony/ Loss-tolerant Audio: few kbps—1 Mbps Yes: 100s of msec
Video conferencing Video: 10 kbps—5 Mbps

Streaming stored Loss-tolerant Same as above Yes: few seconds
audio//video

Interactive gomes Loss-tolerant Few kbps—10 kbps Yes: 100s of msec
Smartphone messaging No loss Elastic Yes and no

Figure 2.4 + Requirements of selected network applications

Internet, one of the first decisions you have to make is whether to use UDP or TCP.
Each of these protocols offers a different set of services to the invoking applications.
Figure 2.4 shows the service requirements for some selected applications.

TCP Services

The TCP service model includes a connection-oriented service and a reliable data
transfer service. When an application invokes TCP as its transport protocol, the
application receives both of these services from TCP.

Connection-oriented service. TCP has the client and server exchange transport-
layer control information with each other before the application-level mes-
sages begin to flow. This so-called handshaking procedure alerts the client
and server, allowing them to prepare for an onslaught of packets. After the
handshaking phase, a TCP connection is said to exist between the sockets
of the two processes. The connection is a full-duplex connection in that the two
processes can send messages to each other over the connection at the same time.
When the application finishes sending messages, it must tear down the connec-
tion. In Chapter 3, we’ll discuss connection-oriented service in detail and examine
how it is implemented.

Reliable data transfer service. The communicating processes can rely on TCP to
deliver all data sent without error and in the proper order. When one side of the
application passes a stream of bytes into a socket, it can count on TCP to deliver the
same stream of bytes to the receiving socket, with no missing or duplicate bytes.
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TCP also includes a congestion-control mechanism, a service for the general
welfare of the Internet rather than for the direct benefit of the communicating pro-
cesses. The TCP congestion-control mechanism throttles a sending process (client or
server) when the network is congested between sender and receiver. As we will see
in Chapter 3, TCP congestion control also attempts to limit each TCP connection to
its fair share of network bandwidth.

UDP Services

UDP is a no-frills, lightweight transport protocol, providing minimal services. UDP
is connectionless, so there is no handshaking before the two processes start to com-
municate. UDP provides an unreliable data transfer service—that is, when a process
sends a message into a UDP socket, UDP provides no guarantee that the message
will ever reach the receiving process. Furthermore, messages that do arrive at the
receiving process may arrive out of order.

FOCUS ON SECURITY

SECURING TCP

Neither TCP nor UDP provides any encryption—the data that the sending process
passes info its socket is the same data that travels over the network to the destina-
tion process. So, for example, if the sending process sends a password in cleartext
(i.e., unencrypted) into its socket, the cleartext password will travel over all the links
between sender and receiver, potentially getting sniffed and discovered at any of the
intervening links. Because privacy and other security issues have become critical for
many applications, the Internet community has developed an enhancement for TCP,
called Transport Layer Security (TLS) [RFC 5246]. TCP-enhanced-with-TLS not
only does everything that traditional TCP does but also provides critical process-to-
process security services, including encryption, data integrity, and end-point authenti-
cation. We emphasize that TLS is not a third Internet transport protocol, on the same
level as TCP and UDP, but instead is an enhancement of TCP, with the enhancements
being implemented in the application layer. In particular, if an application wants to
use the services of TLS, it needs to include TLS code (existing, highly optimized librar-
ies and classes) in both the client and server sides of the application. TLS has its own
socket API that is similar to the traditional TCP socket API. When an application uses
TLS, the sending process passes cleartext data to the TLS socket; TLS in the sending
host then encrypts the data and passes the encrypted data to the TCP socket. The
encrypted data travels over the Internet to the TCP socket in the receiving process.
The receiving socket passes the encrypted data to TLS, which decrypts the data.
Finally, TLS passes the cleartext data through its TLS socket to the receiving process.
We'll cover TLS in some detail in Chapter 8.
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UDP does not include a congestion-control mechanism, so the sending side of
UDP can pump data into the layer below (the network layer) at any rate it pleases.
(Note, however, that the actual end-to-end throughput may be less than this rate due
to the limited transmission capacity of intervening links or due to congestion).

Services Not Provided by Internet Transport Protocols

We have organized transport protocol services along four dimensions: reliable data
transfer, throughput, timing, and security. Which of these services are provided by
TCP and UDP? We have already noted that TCP provides reliable end-to-end data
transfer. And we also know that TCP can be easily enhanced at the application
layer with TLS to provide security services. But in our brief description of TCP and
UDP, conspicuously missing was any mention of throughput or timing guarantees—
services not provided by today’s Internet transport protocols. Does this mean that time-
sensitive applications such as Internet telephony cannot run in today’s Internet? The
answer is clearly no—the Internet has been hosting time-sensitive applications for
many years. These applications often work fairly well because they have been designed
to cope, to the greatest extent possible, with this lack of guarantee. Nevertheless, clever
design has its limitations when delay is excessive, or the end-to-end throughput is
limited. In summary, today’s Internet can often provide satisfactory service to time-
sensitive applications, but it cannot provide any timing or throughput guarantees.
Figure 2.5 indicates the transport protocols used by some popular Internet appli-
cations. We see that e-mail, remote terminal access, the Web, and file transfer all use
TCP. These applications have chosen TCP primarily because TCP provides reliable
data transfer, guaranteeing that all data will eventually get to its destination. Because
Internet telephony applications (such as Skype) can often tolerate some loss but
require a minimal rate to be effective, developers of Internet telephony applications

Application Application-Layer Profocol Underlying Transport Protocol
Electronic mail SMTP [RFC 5321] TCP

Remote terminal access  Telnet [RFC 854] 1CP

Web HTTP 1.1 [RFC 7230] TCP

File transfer FTP [RFC 959] TCP

Streaming multimedia  HTTP (e.g., YouTube), DASH TCP

Internet telephony SIP [RFC 3261], RTP [RFC 35501, or proprietary UDP or TCP

(e.g., Skype)

Figure 2.5 + Popular Internet applications, their application-layer
protocols, and their underlying transport protocols
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usually prefer to run their applications over UDP, thereby circumventing TCP’s
congestion control mechanism and packet overheads. But because many firewalls
are configured to block (most types of) UDP traffic, Internet telephony applications
often are designed to use TCP as a backup if UDP communication fails.

2.1.5 Application-Layer Protocols

We have just learned that network processes communicate with each other by sending
messages into sockets. But how are these messages structured? What are the meanings
of the various fields in the messages? When do the processes send the messages? These
questions bring us into the realm of application-layer protocols. An application-layer
protocol defines how an application’s processes, running on different end systems,
pass messages to each other. In particular, an application-layer protocol defines:

* The types of messages exchanged, for example, request messages and response
messages

* The syntax of the various message types, such as the fields in the message and
how the fields are delineated

* The semantics of the fields, that is, the meaning of the information in the fields

* Rules for determining when and how a process sends messages and responds to
messages

Some application-layer protocols are specified in RFCs and are therefore in the
public domain. For example, the Web’s application-layer protocol, HTTP (the
HyperText Transfer Protocol [RFC 7230]), is available as an RFC. If a browser
developer follows the rules of the HTTP RFC, the browser will be able to retrieve
Web pages from any Web server that has also followed the rules of the HTTP RFC.
Many other application-layer protocols are proprietary and intentionally not avail-
able in the public domain. For example, Skype uses proprietary application-layer
protocols.

It is important to distinguish between network applications and application-layer
protocols. An application-layer protocol is only one piece of a network application
(albeit, a very important piece of the application from our point of view!). Let’s look
at a couple of examples. The Web is a client-server application that allows users to
obtain documents from Web servers on demand. The Web application consists of
many components, including a standard for document formats (that is, HTML), Web
browsers (for example, Chrome and Microsoft Internet Explorer), Web servers
(for example, Apache and Microsoft servers), and an application-layer protocol.
The Web’s application-layer protocol, HTTP, defines the format and sequence
of messages exchanged between browser and Web server. Thus, HTTP is only
one piece (albeit, an important piece) of the Web application. As another example,
we’ll see in Section 2.6 that Netflix’s video service also has many components,
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including servers that store and transmit videos, other servers that manage billing
and other client functions, clients (e.g., the Netflix app on your smartphone, tablet, or
computer), and an application-level DASH protocol defines the format and sequence
of messages exchanged between a Netflix server and client. Thus, DASH is only one
piece (albeit, an important piece) of the Netflix application.

2.1.6 Network Applications Covered in This Book

New applications are being developed every day. Rather than covering a large
number of Internet applications in an encyclopedic manner, we have chosen to
focus on a small number of applications that are both pervasive and important.
In this chapter, we discuss five important applications: the Web, electronic mail,
directory service, video streaming, and P2P applications. We first discuss the
Web, not only because it is an enormously popular application, but also because
its application-layer protocol, HTTP, is straightforward and easy to understand.
We then discuss electronic mail, the Internet’s first killer application. E-mail is
more complex than the Web in the sense that it makes use of not one but sev-
eral application-layer protocols. After e-mail, we cover DNS, which provides a
directory service for the Internet. Most users do not interact with DNS directly;
instead, users invoke DNS indirectly through other applications (including the
Web, file transfer, and electronic mail). DNS illustrates nicely how a piece of
core network functionality (network-name to network-address translation) can
be implemented at the application layer in the Internet. We then discuss P2P file
sharing applications, and complete our application study by discussing video
streaming on demand, including distributing stored video over content distribu-
tion networks.

2.2 The Web and HTTP

Until the early 1990s, the Internet was used primarily by researchers, academics,
and university students to log in to remote hosts, to transfer files from local hosts to
remote hosts and vice versa, to receive and send news, and to receive and send elec-
tronic mail. Although these applications were (and continue to be) extremely useful,
the Internet was essentially unknown outside of the academic and research commu-
nities. Then, in the early 1990s, a major new application arrived on the scene—the
World Wide Web [Berners-Lee 1994]. The Web was the first Internet application
that caught the general public’s eye. It dramatically changed how people interact
inside and outside their work environments. It elevated the Internet from just one of
many data networks to essentially the one and only data network.

Perhaps what appeals the most to users is that the Web operates on demand.
Users receive what they want, when they want it. This is unlike traditional broadcast

95



96

CHAPTER 2

APPLICATION LAYER

radio and television, which force users to tune in when the content provider makes
the content available. In addition to being available on demand, the Web has many
other wonderful features that people love and cherish. It is enormously easy for any
individual to make information available over the Web—everyone can become a
publisher at extremely low cost. Hyperlinks and search engines help us navigate
through an ocean of information. Photos and videos stimulate our senses. Forms,
JavaScript, video, and many other devices enable us to interact with pages and sites.
And the Web and its protocols serve as a platform for YouTube, Web-based e-mail
(such as Gmail), and most mobile Internet applications, including Instagram and
Google Maps.

2.2.1 Overview of HTTP

The HyperText Transfer Protocol (HTTP), the Web’s application-layer protocol,
is at the heart of the Web. It is defined in [RFC 1945], [RFC 7230] and [RFC 7540].
HTTP is implemented in two programs: a client program and a server program. The
client program and server program, executing on different end systems, talk to each
other by exchanging HTTP messages. HTTP defines the structure of these messages
and how the client and server exchange the messages. Before explaining HTTP in
detail, we should review some Web terminology.

A Web page (also called a document) consists of objects. An object is
simply a file—such as an HTML file, a JPEG image, a Javascrpt file, a CCS
style sheet file, or a video clip—that is addressable by a single URL. Most Web
pages consist of a base HTML file and several referenced objects. For example,
if a Web page contains HTML text and five JPEG images, then the Web page has
six objects: the base HTML file plus the five images. The base HTML file refer-
ences the other objects in the page with the objects” URLs. Each URL has two
components: the hostname of the server that houses the object and the object’s
path name. For example, the URL

http://www.someSchool.edu/someDepartment/picture.gif

has www . someSchool . edu for a hostname and /someDepartment/picture.
gif for a path name. Because Web browsers (such as Internet Explorer and Chrome)
implement the client side of HTTP, in the context of the Web, we will use the words
browser and client interchangeably. Web servers, which implement the server side
of HTTP, house Web objects, each addressable by a URL. Popular Web servers
include Apache and Microsoft Internet Information Server.

HTTP defines how Web clients request Web pages from Web servers and how
servers transfer Web pages to clients. We discuss the interaction between client
and server in detail later, but the general idea is illustrated in Figure 2.6. When a
user requests a Web page (for example, clicks on a hyperlink), the browser sends
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Server running
Apache Web server

PC running Android smartphone
Internet Explorer running Google Chrome

Figure 2.6 + HTTP requestresponse behavior

HTTP request messages for the objects in the page to the server. The server receives
the requests and responds with HTTP response messages that contain the objects.

HTTP uses TCP as its underlying transport protocol (rather than running on top
of UDP). The HTTP client first initiates a TCP connection with the server. Once the
connection is established, the browser and the server processes access TCP through
their socket interfaces. As described in Section 2.1, on the client side the socket inter-
face is the door between the client process and the TCP connection; on the server side
it is the door between the server process and the TCP connection. The client sends
HTTP request messages into its socket interface and receives HTTP response mes-
sages from its socket interface. Similarly, the HTTP server receives request messages
from its socket interface and sends response messages into its socket interface. Once
the client sends a message into its socket interface, the message is out of the client’s
hands and is “in the hands” of TCP. Recall from Section 2.1 that TCP provides a
reliable data transfer service to HTTP. This implies that each HTTP request message
sent by a client process eventually arrives intact at the server; similarly, each HTTP
response message sent by the server process eventually arrives intact at the client.
Here we see one of the great advantages of a layered architecture—HTTP need not
worry about lost data or the details of how TCP recovers from loss or reordering of
data within the network. That is the job of TCP and the protocols in the lower layers
of the protocol stack.

It is important to note that the server sends requested files to clients without
storing any state information about the client. If a particular client asks for the same
object twice in a period of a few seconds, the server does not respond by saying
that it just served the object to the client; instead, the server resends the object, as
it has completely forgotten what it did earlier. Because an HTTP server maintains
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no information about the clients, HTTP is said to be a stateless protocol. We also
remark that the Web uses the client-server application architecture, as described in
Section 2.1. A Web server is always on, with a fixed IP address, and it services
requests from potentially millions of different browsers.

The original version of HTTP is called HTTP/1.0 and dates back to the early
1990’s [RFC 1945]. As of 2020, the majority of HTTP transactions take place over
HTTP/1.1 [RFEC 7230]. However, increasingly browsers and Web servers also sup-
port a new version of HTTP called HTTP/2 [RFC 7540]. At the end of this section,
we’ll provide an introduction to HTTP/2.

2.2.2 Non-Persistent and Persistent Connections

In many Internet applications, the client and server communicate for an extended
period of time, with the client making a series of requests and the server respond-
ing to each of the requests. Depending on the application and on how the
application is being used, the series of requests may be made back-to-back, peri-
odically at regular intervals, or intermittently. When this client-server interaction
is taking place over TCP, the application developer needs to make an important
decision—should each request/response pair be sent over a separate TCP connec-
tion, or should all of the requests and their corresponding responses be sent over
the same TCP connection? In the former approach, the application is said to use
non-persistent connections; and in the latter approach, persistent connections. To
gain a deep understanding of this design issue, let’s examine the advantages and dis-
advantages of persistent connections in the context of a specific application, namely,
HTTP, which can use both non-persistent connections and persistent connections.
Although HTTP uses persistent connections in its default mode, HTTP clients and
servers can be configured to use non-persistent connections instead.

HTTP with Non-Persistent Connections

Let’s walk through the steps of transferring a Web page from server to client for the
case of non-persistent connections. Let’s suppose the page consists of a base HTML
file and 10 JPEG images, and that all 11 of these objects reside on the same server.
Further suppose the URL for the base HTML file is

http://www.someSchool.edu/someDepartment/home.index
Here is what happens:
1. The HTTP client process initiates a TCP connection to the server
www . someSchool . edu on port number 80, which is the default port number

for HTTP. Associated with the TCP connection, there will be a socket at the
client and a socket at the server.
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2. The HTTP client sends an HTTP request message to the server via its socket.
The request message includes the path name /someDepartment/home
. index. (We will discuss HTTP messages in some detail below.)

3. The HTTP server process receives the request message via its socket, retrieves
the object /someDepartment/home.index from its storage (RAM or
disk), encapsulates the object in an HTTP response message, and sends the
response message to the client via its socket.

4. The HTTP server process tells TCP to close the TCP connection. (But TCP
doesn’t actually terminate the connection until it knows for sure that the client
has received the response message intact.)

5. The HTTP client receives the response message. The TCP connection termi-
nates. The message indicates that the encapsulated object is an HTML file. The
client extracts the file from the response message, examines the HTML file, and
finds references to the 10 JPEG objects.

6. The first four steps are then repeated for each of the referenced JPEG objects.

As the browser receives the Web page, it displays the page to the user. Two
different browsers may interpret (that is, display to the user) a Web page in some-
what different ways. HTTP has nothing to do with how a Web page is interpreted
by a client. The HTTP specifications ([RFC 1945] and [RFC 7540]) define only the
communication protocol between the client HTTP program and the server HTTP
program.

The steps above illustrate the use of non-persistent connections, where each
TCP connection is closed after the server sends the object—the connection does not
persist for other objects. HTTP/1.0 employes non-persistent TCP connections. Note
that each non-persistent TCP connection transports exactly one request message and
one response message. Thus, in this example, when a user requests the Web page, 11
TCP connections are generated.

In the steps described above, we were intentionally vague about whether the
client obtains the 10 JPEGs over 10 serial TCP connections, or whether some of the
JPEGs are obtained over parallel TCP connections. Indeed, users can configure some
browsers to control the degree of parallelism. Browsers may open multiple TCP con-
nections and request different parts of the Web page over the multiple connections. As
we’ll see in the next chapter, the use of parallel connections shortens the response time.

Before continuing, let’s do a back-of-the-envelope calculation to estimate the
amount of time that elapses from when a client requests the base HTML file until
the entire file is received by the client. To this end, we define the round-trip time
(RTT), which is the time it takes for a small packet to travel from client to server
and then back to the client. The RTT includes packet-propagation delays, packet-
queuing delays in intermediate routers and switches, and packet-processing delays.
(These delays were discussed in Section 1.4.) Now consider what happens when
a user clicks on a hyperlink. As shown in Figure 2.7, this causes the browser to
initiate a TCP connection between the browser and the Web server; this involves
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Figure 2.7 + Back-ofthe-envelope calculation for the time needed
to request and receive an HTML file

a “three-way handshake”—the client sends a small TCP segment to the server, the
server acknowledges and responds with a small TCP segment, and, finally, the cli-
ent acknowledges back to the server. The first two parts of the three-way handshake
take one RTT. After completing the first two parts of the handshake, the client sends
the HTTP request message combined with the third part of the three-way handshake
(the acknowledgment) into the TCP connection. Once the request message arrives at
the server, the server sends the HTML file into the TCP connection. This HTTP
request/response eats up another RTT. Thus, roughly, the total response time is two
RTTs plus the transmission time at the server of the HTML file.

HTTP with Persistent Connections

Non-persistent connections have some shortcomings. First, a brand-new connection
must be established and maintained for each requested object. For each of these
connections, TCP buffers must be allocated and TCP variables must be kept in both
the client and server. This can place a significant burden on the Web server, which
may be serving requests from hundreds of different clients simultaneously. Second,
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as we just described, each object suffers a delivery delay of two RTTs—one RTT to
establish the TCP connection and one RTT to request and receive an object.

With HTTP/1.1 persistent connections, the server leaves the TCP connection
open after sending a response. Subsequent requests and responses between the same
client and server can be sent over the same connection. In particular, an entire Web
page (in the example above, the base HTML file and the 10 images) can be sent over
a single persistent TCP connection. Moreover, multiple Web pages residing on the
same server can be sent from the server to the same client over a single persistent
TCP connection. These requests for objects can be made back-to-back, without wait-
ing for replies to pending requests (pipelining). Typically, the HTTP server closes
a connection when it isn’t used for a certain time (a configurable timeout interval).
When the server receives the back-to-back requests, it sends the objects back-to-
back. The default mode of HTTP uses persistent connections with pipelining. We’ll
quantitatively compare the performance of non-persistent and persistent connections
in the homework problems of Chapters 2 and 3. You are also encouraged to see
[Heidemann 1997; Nielsen 1997; RFC 7540].

2.2.3 HTTP Message Format

The HTTP specifications [RFC 1945; RFC 7230; RFC 7540] include the definitions
of the HTTP message formats. There are two types of HTTP messages, request mes-
sages and response messages, both of which are discussed below.

HTTP Request Message

Below we provide a typical HTTP request message:

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
Connection: close

User-agent: Mozilla/5.0
Accept-language: fr

We can learn a lot by taking a close look at this simple request message. First of
all, we see that the message is written in ordinary ASCII text, so that your ordinary
computer-literate human being can read it. Second, we see that the message consists
of five lines, each followed by a carriage return and a line feed. The last line is fol-
lowed by an additional carriage return and line feed. Although this particular request
message has five lines, a request message can have many more lines or as few as
one line. The first line of an HTTP request message is called the request line; the
subsequent lines are called the header lines. The request line has three fields: the
method field, the URL field, and the HTTP version field. The method field can take
on several different values, including GET, POST, HEAD, PUT, and DELETE.
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The great majority of HTTP request messages use the GET method. The GET method
is used when the browser requests an object, with the requested object identified in
the URL field. In this example, the browser is requesting the object /somedir/
page.html. The version is self-explanatory; in this example, the browser imple-
ments version HTTP/1.1.

Now let’s look at the header lines in the example. The header line Host:
www . someschool . edu specifies the host on which the object resides. You might
think that this header line is unnecessary, as there is already a TCP connection in
place to the host. But, as we’ll see in Section 2.2.5, the information provided by the
host header line is required by Web proxy caches. By including the Connection:
close header line, the browser is telling the server that it doesn’t want to bother
with persistent connections; it wants the server to close the connection after sending
the requested object. The User-agent: header line specifies the user agent, that
is, the browser type that is making the request to the server. Here the user agent is
Mozilla/5.0, a Firefox browser. This header line is useful because the server can actu-
ally send different versions of the same object to different types of user agents. (Each
of the versions is addressed by the same URL.) Finally, the Accept-language:
header indicates that the user prefers to receive a French version of the object, if such
an object exists on the server; otherwise, the server should send its default version.
The Accept-language: header is just one of many content negotiation headers
available in HTTP.

Having looked at an example, let’s now look at the general format of a request
message, as shown in Figure 2.8. We see that the general format closely follows our
earlier example. You may have noticed, however, that after the header lines (and the
additional carriage return and line feed) there is an “entity body.” The entity body

Request line method |sp URL sp| Version |cr|If
header field name: |sp| value |cr| If
Header lines T 2
header field name: |sp| value |cr| If
Blank line———— cr | If
Entity body 1 J
T

Figure 2.8 + General format of an HTTP request message
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is empty with the GET method, but is used with the POST method. An HTTP client
often uses the POST method when the user fills out a form—for example, when a
user provides search words to a search engine. With a POST message, the user is still
requesting a Web page from the server, but the specific contents of the Web page
depend on what the user entered into the form fields. If the value of the method field
is POST, then the entity body contains what the user entered into the form fields.

We would be remiss if we didn’t mention that a request generated with a form
does not necessarily have to use the POST method. Instead, HTML forms often use
the GET method and include the inputted data (in the form fields) in the requested
URL. For example, if a form uses the GET method, has two fields, and the inputs to
the two fields are monkeys and bananas, then the URL will have the structure
www.somesite.com/animalsearch?monkeysé&bananas. In your day-to-
day Web surfing, you have probably noticed extended URLS of this sort.

The HEAD method is similar to the GET method. When a server receives a
request with the HEAD method, it responds with an HTTP message but it leaves out
the requested object. Application developers often use the HEAD method for debug-
ging. The PUT method is often used in conjunction with Web publishing tools. It
allows a user to upload an object to a specific path (directory) on a specific Web
server. The PUT method is also used by applications that need to upload objects
to Web servers. The DELETE method allows a user, or an application, to delete an
object on a Web server.

HTTP Response Message

Below we provide a typical HTTP response message. This response message could
be the response to the example request message just discussed.

HTTP/1.1 200 OK

Connection: close

Date: Tue, 18 Aug 2015 15:44:04 GMT

Server: Apache/2.2.3 (Cent0S)

Last-Modified: Tue, 18 Aug 2015 15:11:03 GMT
Content-Length: 6821

Content-Type: text/html

(data data data data data ...)

Let’s take a careful look at this response message. It has three sections: an initial
status line, six header lines, and then the entity body. The entity body is the meat
of the message—it contains the requested object itself (represented by data data
data data data ...). The status line has three fields: the protocol version
field, a status code, and a corresponding status message. In this example, the status
line indicates that the server is using HTTP/1.1 and that everything is OK (that is, the
server has found, and is sending, the requested object).
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Now let’s look at the header lines. The server uses the Connection: close
header line to tell the client that it is going to close the TCP connection after sending
the message. The Date: header line indicates the time and date when the HTTP
response was created and sent by the server. Note that this is not the time when
the object was created or last modified; it is the time when the server retrieves the
object from its file system, inserts the object into the response message, and sends the
response message. The Server: header line indicates that the message was gener-
ated by an Apache Web server; it is analogous to the User-agent : header line in
the HTTP request message. The Last-Modified: header line indicates the time
and date when the object was created or last modified. The Last-Modified:
header, which we will soon cover in more detail, is critical for object caching, both
in the local client and in network cache servers (also known as proxy servers). The
Content-Length: header line indicates the number of bytes in the object being
sent. The Content-Type: header line indicates that the object in the entity body
is HTML text. (The object type is officially indicated by the Content-Type:
header and not by the file extension.)

Having looked at an example, let’s now examine the general format of a response
message, which is shown in Figure 2.9. This general format of the response message
matches the previous example of a response message. Let’s say a few additional words
about status codes and their phrases. The status code and associated phrase indicate
the result of the request. Some common status codes and associated phrases include:

* 200 OK: Request succeeded and the information is returned in the response.

°* 301 Moved Permanently: Requested object has been permanently moved;
the new URL is specified in Location: header of the response message. The
client software will automatically retrieve the new URL.

Status line———— version |sp| statuscode |sp| phrase |cr| If
header field name: [sp| value |cr| If
Header lines T r
header field name: [sp| value |cr| If
Blank line ——— cr | If
Entity body ] J
T i

Figure 2.9 + General format of an HTTP response message
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e 400 Bad Request: This is a generic error code indicating that the request
could not be understood by the server.

° 404 Not Found: The requested document does not exist on this server.

e 505 HTTP Version Not Supported: The requested HTTP protocol ver-
sion is not supported by the server.

How would you like to see a real HTTP response message? This is highly rec-
ommended and very easy to do! First Telnet into your favorite Web server. Then
type in a one-line request message for some object that is housed on the server. For
example, if you have access to a command prompt, type:

telnet gaia.cs.umass.edu 80

GET /kurose_ross/interactive/index.php HTTP/1.1
Host: gaia.cs.umass.edu

(Press the carriage return twice after typing the last line.) This opens a TCP con-
nection to port 80 of the host gaia.cs.umass.edu and then sends the HTTP
request message. You should see a response message that includes the base HTML
file for the interactive homework problems for this textbook. If you’d rather just see
the HTTP message lines and not receive the object itself, replace GET with HEAD.

In this section, we discussed a number of header lines that can be used within
HTTP request and response messages. The HTTP specification defines many,
many more header lines that can be inserted by browsers, Web servers, and net-
work cache servers. We have covered only a small number of the totality of header
lines. We’ll cover a few more below and another small number when we discuss
network Web caching in Section 2.2.5. A highly readable and comprehensive dis-
cussion of the HTTP protocol, including its headers and status codes, is given in
[Krishnamurthy 2001].

How does a browser decide which header lines to include in a request message?
How does a Web server decide which header lines to include in a response mes-
sage? A browser will generate header lines as a function of the browser type and
version, the user configuration of the browser and whether the browser currently
has a cached, but possibly out-of-date, version of the object. Web servers behave
similarly: There are different products, versions, and configurations, all of which
influence which header lines are included in response messages.

2.2.4 User-Server Interaction: Cookies

We mentioned above that an HTTP server is stateless. This simplifies server design
and has permitted engineers to develop high-performance Web servers that can han-
dle thousands of simultaneous TCP connections. However, it is often desirable for
a Web site to identify users, either because the server wishes to restrict user access

VideoNote

Using Wireshark to
investigate the HTTP
protocol
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or because it wants to serve content as a function of the user identity. For these pur-
poses, HTTP uses cookies. Cookies, defined in [RFC 6265], allow sites to keep track
of users. Most major commercial Web sites use cookies today.

As shown in Figure 2.10, cookie technology has four components: (1) a cookie
header line in the HTTP response message; (2) a cookie header line in the HTTP
request message; (3) a cookie file kept on the user’s end system and managed by
the user’s browser; and (4) a back-end database at the Web site. Using Figure 2.10,
let’s walk through an example of how cookies work. Suppose Susan, who always

Client host Server host

j

ebay: 8734

—— Server creates
ID 1678 for user
entry in backend

8 database
amazon: 1678
ebay: 8734 access
—— Cookie-specific ¢——»
action
One week later
access

amazon: 1678

—— Cookie-specific
action

ebay: 8734

Time Time

Key:

8 Cookie file

Figure 2.10 ¢ Keeping user state with cookies
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accesses the Web using Internet Explorer from her home PC, contacts Amazon.com
for the first time. Let us suppose that in the past she has already visited the eBay site.
When the request comes into the Amazon Web server, the server creates a unique
identification number and creates an entry in its back-end database that is indexed
by the identification number. The Amazon Web server then responds to Susan’s
browser, including in the HTTP response a Set-cookie: header, which contains
the identification number. For example, the header line might be:

Set-cookie: 1678

When Susan’s browser receives the HTTP response message, it sees the
Set-cookie: header. The browser then appends a line to the special cookie file
that it manages. This line includes the hostname of the server and the identification
number in the Set-cookie: header. Note that the cookie file already has an entry
for eBay, since Susan has visited that site in the past. As Susan continues to browse
the Amazon site, each time she requests a Web page, her browser consults her cookie
file, extracts her identification number for this site, and puts a cookie header line that
includes the identification number in the HTTP request. Specifically, each of her
HTTP requests to the Amazon server includes the header line:

Cookie: 1678

In this manner, the Amazon server is able to track Susan’s activity at the Amazon
site. Although the Amazon Web site does not necessarily know Susan’s name, it
knows exactly which pages user 1678 visited, in which order, and at what times!
Amazon uses cookies to provide its shopping cart service—Amazon can maintain a
list of all of Susan’s intended purchases, so that she can pay for them collectively at
the end of the session.

If Susan returns to Amazon’s site, say, one week later, her browser will con-
tinue to put the header line Cookie: 1678 in the request messages. Amazon also
recommends products to Susan based on Web pages she has visited at Amazon in
the past. If Susan also registers herself with Amazon—providing full name, e-mail
address, postal address, and credit card information—Amazon can then include this
information in its database, thereby associating Susan’s name with her identifica-
tion number (and all of the pages she has visited at the site in the past!). This is how
Amazon and other e-commerce sites provide “one-click shopping”—when Susan
chooses to purchase an item during a subsequent visit, she doesn’t need to re-enter
her name, credit card number, or address.

From this discussion, we see that cookies can be used to identify a user. The first
time a user visits a site, the user can provide a user identification (possibly his or her
name). During the subsequent sessions, the browser passes a cookie header to the
server, thereby identifying the user to the server. Cookies can thus be used to create
a user session layer on top of stateless HTTP. For example, when a user logs in to
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a Web-based e-mail application (such as Hotmail), the browser sends cookie infor-
mation to the server, permitting the server to identify the user throughout the user’s
session with the application.

Although cookies often simplify the Internet shopping experience for the user,
they are controversial because they can also be considered as an invasion of privacy.
As we just saw, using a combination of cookies and user-supplied account informa-
tion, a Web site can learn a lot about a user and potentially sell this information to a
third party.

2.2.5 Web Caching

A Web cache—also called a proxy server—is a network entity that satisfies HTTP
requests on the behalf of an origin Web server. The Web cache has its own disk
storage and keeps copies of recently requested objects in this storage. As shown in
Figure 2.11, auser’s browser can be configured so that all of the user’s HTTP requests
are first directed to the Web cache [RFC 7234]. Once a browser is configured, each
browser request for an object is first directed to the Web cache. As an example,
suppose a browser is requesting the object http://www.someschool.edu/
campus . gif. Here is what happens:

1. The browser establishes a TCP connection to the Web cache and sends an HTTP
request for the object to the Web cache.

2. The Web cache checks to see if it has a copy of the object stored locally. If it
does, the Web cache returns the object within an HTTP response message to the
client browser.

3. If the Web cache does not have the object, the Web cache opens a TCP connec-
tion to the origin server, that is, to www . someschool.edu. The Web cache
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re ey Origin
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Figure 2.11 ¢ Clients requesting objects through a Web cache
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then sends an HTTP request for the object into the cache-to-server TCP connec-
tion. After receiving this request, the origin server sends the object within an
HTTP response to the Web cache.

4. When the Web cache receives the object, it stores a copy in its local storage and
sends a copy, within an HTTP response message, to the client browser (over the
existing TCP connection between the client browser and the Web cache).

Note that a cache is both a server and a client at the same time. When it receives
requests from and sends responses to a browser, it is a server. When it sends requests
to and receives responses from an origin server, it is a client.

Typically a Web cache is purchased and installed by an ISP. For example, a uni-
versity might install a cache on its campus network and configure all of the campus
browsers to point to the cache. Or a major residential ISP (such as Comcast) might
install one or more caches in its network and preconfigure its shipped browsers to
point to the installed caches.

Web caching has seen deployment in the Internet for two reasons. First, a Web
cache can substantially reduce the response time for a client request, particularly if
the bottleneck bandwidth between the client and the origin server is much less than
the bottleneck bandwidth between the client and the cache. If there is a high-speed
connection between the client and the cache, as there often is, and if the cache has
the requested object, then the cache will be able to deliver the object rapidly to the
client. Second, as we will soon illustrate with an example, Web caches can sub-
stantially reduce traffic on an institution’s access link to the Internet. By reducing
traffic, the institution (for example, a company or a university) does not have to
upgrade bandwidth as quickly, thereby reducing costs. Furthermore, Web caches
can substantially reduce Web traffic in the Internet as a whole, thereby improving
performance for all applications.

To gain a deeper understanding of the benefits of caches, let’s consider an exam-
ple in the context of Figure 2.12. This figure shows two networks—the institutional
network and the rest of the public Internet. The institutional network is a high-speed
LAN. A router in the institutional network and a router in the Internet are connected
by a 15 Mbps link. The origin servers are attached to the Internet but are located all
over the globe. Suppose that the average object size is 1 Mbits and that the average
request rate from the institution’s browsers to the origin servers is 15 requests per
second. Suppose that the HTTP request messages are negligibly small and thus cre-
ate no traffic in the networks or in the access link (from institutional router to Internet
router). Also suppose that the amount of time it takes from when the router on the
Internet side of the access link in Figure 2.12 forwards an HTTP request (within an
IP datagram) until it receives the response (typically within many IP datagrams) is
two seconds on average. Informally, we refer to this last delay as the “Internet delay.”

The total response time—that is, the time from the browser’s request of an
object until its receipt of the object—is the sum of the LAN delay, the access delay
(that is, the delay between the two routers), and the Internet delay. Let’s now do
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Origin servers

Public Internet

15 Mbps access link

Institutional network

Figure 2.12 ¢ Bottleneck between an institutional network and the Internet

a very crude calculation to estimate this delay. The traffic intensity on the LAN
(see Section 1.4.2) is

(15 requests/sec) * (1 Mbits/request)/(100 Mbps) = 0.15

whereas the traffic intensity on the access link (from the Internet router to institution
router) is

(15 requests/sec) * (1 Mbits/request)/(15 Mbps) = 1

A traffic intensity of 0.15 on a LAN typically results in, at most, tens of millisec-
onds of delay; hence, we can neglect the LAN delay. However, as discussed in
Section 1.4.2, as the traffic intensity approaches 1 (as is the case of the access link
in Figure 2.12), the delay on a link becomes very large and grows without bound.
Thus, the average response time to satisfy requests is going to be on the order of
minutes, if not more, which is unacceptable for the institution’s users. Clearly
something must be done.
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One possible solution is to increase the access rate from 15 Mbps to, say, 100 Mbps.
This will lower the traffic intensity on the access link to 0.15, which translates to neg-
ligible delays between the two routers. In this case, the total response time will roughly
be two seconds, that is, the Internet delay. But this solution also means that the institu-
tion must upgrade its access link from 15 Mbps to 100 Mbps, a costly proposition.

Now consider the alternative solution of not upgrading the access link but
instead installing a Web cache in the institutional network. This solution is illustrated
in Figure 2.13. Hit rates—the fraction of requests that are satisfied by a cache—
typically range from 0.2 to 0.7 in practice. For illustrative purposes, let’s suppose
that the cache provides a hit rate of 0.4 for this institution. Because the clients and
the cache are connected to the same high-speed LAN, 40 percent of the requests will
be satisfied almost immediately, say, within 10 milliseconds, by the cache. Neverthe-
less, the remaining 60 percent of the requests still need to be satisfied by the origin
servers. But with only 60 percent of the requested objects passing through the access
link, the traffic intensity on the access link is reduced from 1.0 to 0.6. Typically, a

Origin servers

Public Internet

15 Mbps access link

Institutional
Institutional network cache

Figure 2.13 ¢ Adding a cache to the institutional network
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traffic intensity less than 0.8 corresponds to a small delay, say, tens of milliseconds,
on a 15 Mbps link. This delay is negligible compared with the two-second Internet
delay. Given these considerations, average delay therefore is

0.4 -(0.01 seconds) + 0.6-(2.01 seconds)

which is just slightly greater than 1.2 seconds. Thus, this second solution provides an
even lower response time than the first solution, and it doesn’t require the institution
to upgrade its link to the Internet. The institution does, of course, have to purchase
and install a Web cache. But this cost is low—many caches use public-domain soft-
ware that runs on inexpensive PCs.

Through the use of Content Distribution Networks (CDNs), Web caches are
increasingly playing an important role in the Internet. A CDN company installs many
geographically distributed caches throughout the Internet, thereby localizing much of
the traffic. There are shared CDNs (such as Akamai and Limelight) and dedicated CDNs
(such as Google and Netflix). We will discuss CDNs in more detail in Section 2.6.

The Conditional GET

Although caching can reduce user-perceived response times, it introduces a new
problem—the copy of an object residing in the cache may be stale. In other words,
the object housed in the Web server may have been modified since the copy was
cached at the client. Fortunately, HTTP has a mechanism that allows a cache to
verify that its objects are up to date. This mechanism is called the conditional GET
[RFC 7232]. An HTTP request message is a so-called conditional GET message if
(1) the request message uses the GET method and (2) the request message includes an
If-Modified-Since: header line.

To illustrate how the conditional GET operates, let’s walk through an example.
First, on the behalf of a requesting browser, a proxy cache sends a request message
to a Web server:

GET /fruit/kiwi.gif HTTP/1.1
Host: www.exotiquecuisine.com

Second, the Web server sends a response message with the requested object to the
cache:

HTTP/1.1 200 OK

Date: Sat, 3 Oct 2015 15:39:29

Server: Apache/1.3.0 (Unix)
Last-Modified: Wed, 9 Sep 2015 09:23:24
Content-Type: image/gif

(data data data data data ...)
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The cache forwards the object to the requesting browser but also caches the object
locally. Importantly, the cache also stores the last-modified date along with the
object. Third, one week later, another browser requests the same object via the cache,
and the object is still in the cache. Since this object may have been modified at the
Web server in the past week, the cache performs an up-to-date check by issuing a
conditional GET. Specifically, the cache sends:

GET /fruit/kiwi.gif HTTP/1.1
Host: www.exotiquecuisine.com
If-modified-since: Wed, 9 Sep 2015 09:23:24

Note that the value of the Tf-modified-since: header line is exactly equal
to the value of the Last-Modified: header line that was sent by the server one
week ago. This conditional GET is telling the server to send the object only if the
object has been modified since the specified date. Suppose the object has not been
modified since 9 Sep 2015 09:23:24. Then, fourth, the Web server sends a response
message to the cache:

HTTP/1.1 304 Not Modified
Date: Sat, 10 Oct 2015 15:39:29
Server: Apache/1.3.0 (Unix)

(empty entity body)

We see that in response to the conditional GET, the Web server still sends a
response message but does not include the requested object in the response message.
Including the requested object would only waste bandwidth and increase user-
perceived response time, particularly if the object is large. Note that this last response
message has 304 Not Modified in the status line, which tells the cache that it
can go ahead and forward its (the proxy cache’s) cached copy of the object to the
requesting browser.

2.2.6 HTTP/2

HTTP/2 [REC 7540], standardized in 2015, was the first new version of HTTP since
HTTP/1.1, which was standardized in 1997. Since standardization, HTTP/2 has
taken off, with over 40% of the top 10 million websites supporting HTTP/2 in 2020
[W3Techs]. Most browsers—including Google Chrome, Internet Explorer, Safari,
Opera, and Firefox—also support HTTP/2.

The primary goals for HTTP/2 are to reduce perceived latency by enabling request
and response multiplexing over a single TCP connection, provide request prioritization
and server push, and provide efficient compression of HTTP header fields. HTTP/2
does not change HTTP methods, status codes, URLSs, or header fields. Instead, HTTP/2
changes how the data is formatted and transported between the client and server.
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To motivate the need for HTTP/2, recall that HTTP/1.1 uses persistent TCP
connections, allowing a Web page to be sent from server to client over a single TCP
connection. By having only one TCP connection per Web page, the number of sock-
ets at the server is reduced and each transported Web page gets a fair share of the
network bandwidth (as discussed below). But developers of Web browsers quickly
discovered that sending all the objects in a Web page over a single TCP connec-
tion has a Head of Line (HOL) blocking problem. To understand HOL blocking,
consider a Web page that includes an HTML base page, a large video clip near the
top of Web page, and many small objects below the video. Further suppose there is
a low-to-medium speed bottleneck link (for example, a low-speed wireless link) on
the path between server and client. Using a single TCP connection, the video clip
will take a long time to pass through the bottleneck link, while the small objects are
delayed as they wait behind the video clip; that is, the video clip at the head of the
line blocks the small objects behind it. HTTP/1.1 browsers typically work around this
problem by opening multiple parallel TCP connections, thereby having objects in the
same web page sent in parallel to the browser. This way, the small objects can arrive
at and be rendered in the browser much faster, thereby reducing user-perceived delay.

TCP congestion control, discussed in detail in Chapter 3, also provides brows-
ers an unintended incentive to use multiple parallel TCP connections rather than a
single persistent connection. Very roughly speaking, TCP congestion control aims to
give each TCP connection sharing a bottleneck link an equal share of the available
bandwidth of that link; so if there are n TCP connections operating over a bottleneck
link, then each connection approximately gets //nth of the bandwidth. By opening
multiple parallel TCP connections to transport a single Web page, the browser can
“cheat” and grab a larger portion of the link bandwidth. Many HTTP/1.1 browsers
open up to six parallel TCP connections not only to circumvent HOL blocking but
also to obtain more bandwidth.

One of the primary goals of HTTP/2 is to get rid of (or at least reduce the num-
ber of) parallel TCP connections for transporting a single Web page. This not only
reduces the number of sockets that need to be open and maintained at servers, but
also allows TCP congestion control to operate as intended. But with only one TCP
connection to transport a Web page, HTTP/2 requires carefully designed mecha-
nisms to avoid HOL blocking.

HTTP/2 Framing

The HTTP/2 solution for HOL blocking is to break each message into small frames, and
interleave the request and response messages on the same TCP connection. To under-
stand this, consider again the example of a Web page consisting of one large video clip
and, say, 8 smaller objects. Thus the server will receive 9 concurrent requests from any
browser wanting to see this Web page. For each of these requests, the server needs to
send 9 competing HTTP response messages to the browser. Suppose all frames are of
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fixed length, the video clip consists of 1000 frames, and each of the smaller objects
consists of two frames. With frame interleaving, after sending one frame from the
video clip, the first frames of each of the small objects are sent. Then after sending the
second frame of the video clip, the last frames of each of the small objects are sent.
Thus, all of the smaller objects are sent after sending a total of 18 frames. If interleav-
ing were not used, the smaller objects would be sent only after sending 1016 frames.
Thus the HTTP/2 framing mechanism can significantly decrease user-perceived delay.

The ability to break down an HTTP message into independent frames, inter-
leave them, and then reassemble them on the other end is the single most important
enhancement of HTTP/2. The framing is done by the framing sub-layer of the
HTTP/2 protocol. When a server wants to send an HTTP response, the response
is processed by the framing sub-layer, where it is broken down into frames. The
header field of the response becomes one frame, and the body of the message is
broken down into one for more additional frames. The frames of the response are
then interleaved by the framing sub-layer in the server with the frames of other
responses and sent over the single persistent TCP connection. As the frames arrive
at the client, they are first reassembled into the original response messages at the
framing sub-layer and then processed by the browser as usual. Similarly, a client’s
HTTP requests are broken into frames and interleaved.

In addition to breaking down each HTTP message into independent frames, the
framing sublayer also binary encodes the frames. Binary protocols are more efficient
to parse, lead to slightly smaller frames, and are less error-prone.

Response Message Prioritization and Server Pushing

Message prioritization allows developers to customize the relative priority of
requests to better optimize application performance. As we just learned, the fram-
ing sub-layer organizes messages into parallel streams of data destined to the same
requestor. When a client sends concurrent requests to a server, it can prioritize the
responses it is requesting by assigning a weight between 1 and 256 to each message.
The higher number indicates higher priority. Using these weights, the server can
send first the frames for the responses with the highest priority. In addition to this,
the client also states each message’s dependency on other messages by specifying
the ID of the message on which it depends.

Another feature of HTTP/2 is the ability for a server to send multiple responses
for a single client request. That is, in addition to the response to the original request,
the server can push additional objects to the client, without the client having to
request each one. This is possible since the HTML base page indicates the objects
that will be needed to fully render the Web page. So instead of waiting for the
HTTP requests for these objects, the server can analyze the HTML page, identify
the objects that are needed, and send them to the client before receiving explicit
requests for these objects. Server push eliminates the extra latency due to waiting
for the requests.
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HTTP/3

QUIC, discussed in Chapter 3, is a new “transport” protocol that is implemented in
the application layer over the bare-bones UDP protocol. QUIC has several features
that are desirable for HTTP, such as message multiplexing (interleaving), per-stream
flow control, and low-latency connection establishment. HTTP/3 is yet a new HTTP
protocol that is designed to operate over QUIC. As of 2020, HTTP/3 is described
in Internet drafts and has not yet been fully standardized. Many of the HTTP/2 fea-
tures (such as message interleaving) are subsumed by QUIC, allowing for a simpler,
streamlined design for HTTP/3.

2.3 Electronic Mail in the Internet

Electronic mail has been around since the beginning of the Internet. It was the most
popular application when the Internet was in its infancy [Segaller 1998], and has
become more elaborate and powerful over the years. It remains one of the Internet’s
most important and utilized applications.

As with ordinary postal mail, e-mail is an asynchronous communication
medium—people send and read messages when it is convenient for them, without
having to coordinate with other people’s schedules. In contrast with postal mail,
electronic mail is fast, easy to distribute, and inexpensive. Modern e-mail has
many powerful features, including messages with attachments, hyperlinks, HTML-
formatted text, and embedded photos.

In this section, we examine the application-layer protocols that are at the heart
of Internet e-mail. But before we jump into an in-depth discussion of these protocols,
let’s take a high-level view of the Internet mail system and its key components.

Figure 2.14 presents a high-level view of the Internet mail system. We see from
this diagram that it has three major components: user agents, mail servers, and the
Simple Mail Transfer Protocol (SMTP). We now describe each of these compo-
nents in the context of a sender, Alice, sending an e-mail message to a recipient,
Bob. User agents allow users to read, reply to, forward, save, and compose messages.
Examples of user agents for e-mail include Microsoft Outlook, Apple Mail, Web-
based Gmail, the Gmail App running in a smartphone, and so on. When Alice is
finished composing her message, her user agent sends the message to her mail server,
where the message is placed in the mail server’s outgoing message queue. When Bob
wants to read a message, his user agent retrieves the message from his mailbox in his
mail server.

Mail servers form the core of the e-mail infrastructure. Each recipient, such
as Bob, has a mailbox located in one of the mail servers. Bob’s mailbox manages
and maintains the messages that have been sent to him. A typical message starts its
journey in the sender’s user agent, then travels to the sender’s mail server, and then
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Figure 2.14 + A high-level view of the Internet e-mail system

travels to the recipient’s mail server, where it is deposited in the recipient’s mailbox.
When Bob wants to access the messages in his mailbox, the mail server containing
his mailbox authenticates Bob (with his username and password). Alice’s mail server
must also deal with failures in Bob’s mail server. If Alice’s server cannot deliver
mail to Bob’s server, Alice’s server holds the message in a message queue and
attempts to transfer the message later. Reattempts are often done every 30 minutes
or so; if there is no success after several days, the server removes the message and
notifies the sender (Alice) with an e-mail message.

SMTP is the principal application-layer protocol for Internet electronic mail. It
uses the reliable data transfer service of TCP to transfer mail from the sender’s mail
server to the recipient’s mail server. As with most application-layer protocols, SMTP
has two sides: a client side, which executes on the sender’s mail server, and a server
side, which executes on the recipient’s mail server. Both the client and server sides of

W‘ User agent

User agent
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SMTP run on every mail server. When a mail server sends mail to other mail servers,
it acts as an SMTP client. When a mail server receives mail from other mail servers,
it acts as an SMTP server.

2.3.1 SMTP

SMTP, defined in RFC 5321, is at the heart of Internet electronic mail. As men-
tioned above, SMTP transfers messages from senders’ mail servers to the recipients’
mail servers. SMTP is much older than HTTP. (The original SMTP RFC dates back
to 1982, and SMTP was around long before that.) Although SMTP has numerous
wonderful qualities, as evidenced by its ubiquity in the Internet, it is nevertheless
a legacy technology that possesses certain archaic characteristics. For example, it
restricts the body (not just the headers) of all mail messages to simple 7-bit ASCII.
This restriction made sense in the early 1980s when transmission capacity was scarce
and no one was e-mailing large attachments or large image, audio, or video files. But
today, in the multimedia era, the 7-bit ASCII restriction is a bit of a pain—it requires
binary multimedia data to be encoded to ASCII before being sent over SMTP; and it
requires the corresponding ASCII message to be decoded back to binary after SMTP
transport. Recall from Section 2.2 that HTTP does not require multimedia data to be
ASCII encoded before transfer.

To illustrate the basic operation of SMTP, let’s walk through a common sce-
nario. Suppose Alice wants to send Bob a simple ASCII message.

1. Alice invokes her user agent for e-mail, provides Bob’s e-mail address (for
example, bob@someschool.edu), composes a message, and instructs the
user agent to send the message.

2. Alice’s user agent sends the message to her mail server, where it is placed in a
message queue.

3. The client side of SMTP, running on Alice’s mail server, sees the message in the
message queue. It opens a TCP connection to an SMTP server, running on Bob’s
mail server.

4. After some initial SMTP handshaking, the SMTP client sends Alice’s message
into the TCP connection.

5. At Bob’s mail server, the server side of SMTP receives the message. Bob’s mail
server then places the message in Bob’s mailbox.

6. Bob invokes his user agent to read the message at his convenience.

The scenario is summarized in Figure 2.15.

It is important to observe that SMTP does not normally use intermediate mail serv-
ers for sending mail, even when the two mail servers are located at opposite ends of
the world. If Alice’s server is in Hong Kong and Bob’s server is in St. Louis, the TCP
connection is a direct connection between the Hong Kong and St. Louis servers. In
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Figure 2.15 ¢ Alice sends a message to Bob

particular, if Bob’s mail server is down, the message remains in Alice’s mail server and
waits for a new attempt—the message does not get placed in some intermediate mail
server.

Let’s now take a closer look at how SMTP transfers a message from a send-
ing mail server to a receiving mail server. We will see that the SMTP proto-
col has many similarities with protocols that are used for face-to-face human
interaction. First, the client SMTP (running on the sending mail server host) has
TCP establish a connection to port 25 at the server SMTP (running on the receiv-
ing mail server host). If the server is down, the client tries again later. Once
this connection is established, the server and client perform some application-
layer handshaking—just as humans often introduce themselves before trans-
ferring information from one to another, SMTP clients and servers introduce
themselves before transferring information. During this SMTP handshaking phase,
the SMTP client indicates the e-mail address of the sender (the person who gener-
ated the message) and the e-mail address of the recipient. Once the SMTP client and
server have introduced themselves to each other, the client sends the message. SMTP
can count on the reliable data transfer service of TCP to get the message to the server
without errors. The client then repeats this process over the same TCP connection if
it has other messages to send to the server; otherwise, it instructs TCP to close the
connection.

Let’s next take a look at an example transcript of messages exchanged between an
SMTP client (C) and an SMTP server (S). The hostname of the clientis crepes. fr
and the hostname of the server is hamburger . edu. The ASCII text lines prefaced
with C: are exactly the lines the client sends into its TCP socket, and the ASCII text
lines prefaced with S : are exactly the lines the server sends into its TCP socket. The
following transcript begins as soon as the TCP connection is established.

S: 220 hamburger.edu
C: HELO crepes.fr
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250 Hello crepes.fr, pleased to meet you
MAIL FROM: <alice@crepes.fr>

250 alicelcrepes.fr ... Sender ok

RCPT TO: <bob@hamburger.edu>

250 bob@hamburger.edu ... Recipient ok
DATA

354 Enter mail, end with ”.” on a line by itself
Do you like ketchup?
How about pickles?

250 Message accepted for delivery
QUIT
221 hamburger.edu closing connection

N OQOnNnOOOOQOnOnQnOn

In the example above, the client sends a message (“Do you like ketchup?
How about pickles?”) from mail server crepes.fr to mail server
hamburger.edu. As part of the dialogue, the client issued five commands:
HELO (an abbreviation for HELLO), MAIL FROM, RCPT TO, DATA, and QUIT.
These commands are self-explanatory. The client also sends a line consisting of a
single period, which indicates the end of the message to the server. (In ASCII jar-
gon, each message ends with CRLF . CRLF, where CR and LF stand for carriage
return and line feed, respectively.) The server issues replies to each command,
with each reply having a reply code and some (optional) English-language expla-
nation. We mention here that SMTP uses persistent connections: If the sending
mail server has several messages to send to the same receiving mail server, it can
send all of the messages over the same TCP connection. For each message, the
client begins the process with anew MAIL FROM: crepes. fr, designates the
end of message with an isolated period, and issues QUIT only after all messages
have been sent.

It is highly recommended that you use Telnet to carry out a direct dialogue with
an SMTP server. To do this, issue

telnet serverName 25

where serverName is the name of a local mail server. When you do this, you are
simply establishing a TCP connection between your local host and the mail server.
After typing this line, you should immediately receive the 220 reply from the
server. Then issue the SMTP commands HELO, MAIL FROM, RCPT TO, DATA,
CRLF.CRLF, and QUIT at the appropriate times. It is also highly recommended
that you do Programming Assignment 3 at the end of this chapter. In that assign-
ment, you’ll build a simple user agent that implements the client side of SMTP. It
will allow you to send an e-mail message to an arbitrary recipient via a local mail
server.
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2.3.2 Mail Message Formats

When Alice writes an ordinary snail-mail letter to Bob, she may include all kinds
of peripheral header information at the top of the letter, such as Bob’s address, her
own return address, and the date. Similarly, when an e-mail message is sent from
one person to another, a header containing peripheral information precedes the
body of the message itself. This peripheral information is contained in a series of
header lines, which are defined in RFC 5322. The header lines and the body of the
message are separated by a blank line (that is, by CRLF). RFC 5322 specifies the
exact format for mail header lines as well as their semantic interpretations. As with
HTTP, each header line contains readable text, consisting of a keyword followed
by a colon followed by a value. Some of the keywords are required and others are
optional. Every header must have a From: header line and a To: header line;
a header may include a Subject: header line as well as other optional header
lines. It is important to note that these header lines are different from the SMTP
commands we studied in Section 2.3.1 (even though they contain some common
words such as “from” and “t0”). The commands in that section were part of the
SMTP handshaking protocol; the header lines examined in this section are part of
the mail message itself.
A typical message header looks like this:

From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Searching for the meaning of life.

After the message header, a blank line follows; then the message body (in ASCII)
follows. You should use Telnet to send a message to a mail server that contains
some header lines, including the Subject: header line. To do this, issue telnet
serverName 25, as discussed in Section 2.3.1.

2.3.3 Mail Access Protocols

Once SMTP delivers the message from Alice’s mail server to Bob’s mail server, the
message is placed in Bob’s mailbox. Given that Bob (the recipient) executes his user
agent on his local host (e.g., smartphone or PC), it is natural to consider placing a mail
server on his local host as well. With this approach, Alice’s mail server would dia-
logue directly with Bob’s PC. There is a problem with this approach, however. Recall
that a mail server manages mailboxes and runs the client and server sides of SMTP.
If Bob’s mail server were to reside on his local host, then Bob’s host would have to
remain always on, and connected to the Internet, in order to receive new mail, which
can arrive at any time. This is impractical for many Internet users. Instead, a typical
user runs a user agent on the local host but accesses its mailbox stored on an always-
on shared mail server. This mail server is shared with other users.
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Figure 2.16 ¢ E-mail protocols and their communicating entities

Now let’s consider the path an e-mail message takes when it is sent from Alice
to Bob. We just learned that at some point along the path the e-mail message needs to
be deposited in Bob’s mail server. This could be done simply by having Alice’s user
agent send the message directly to Bob’s mail server. However, typically the send-
er’s user agent does not dialogue directly with the recipient’s mail server. Instead, as
shown in Figure 2.16, Alice’s user agent uses SMTP or HTTP to deliver the e-mail
message into her mail server, then Alice’s mail server uses SMTP (as an SMTP cli-
ent) to relay the e-mail message to Bob’s mail server. Why the two-step procedure?
Primarily because without relaying through Alice’s mail server, Alice’s user agent
doesn’t have any recourse to an unreachable destination mail server. By having Alice
first deposit the e-mail in her own mail server, Alice’s mail server can repeatedly try
to send the message to Bob’s mail server, say every 30 minutes, until Bob’s mail
server becomes operational. (And if Alice’s mail server is down, then she has the
recourse of complaining to her system administrator!)

But there is still one missing piece to the puzzle! How does a recipient like Bob,
running a user agent on his local host , obtain his messages, which are sitting in a mail
server? Note that Bob’s user agent can’t use SMTP to obtain the messages because
obtaining the messages is a pull operation, whereas SMTP is a push protocol.

Today, there are two common ways for Bob to retrieve his e-mail from a mail
server. If Bob is using Web-based e-mail or a smartphone app (such as Gmail), then
the user agent will use HTTP to retrieve Bob’s e-mail. This case requires Bob’s mail
server to have an HTTP interface as well as an SMTP interface (to communicate with
Alice’s mail server). The alternative method, typically used with mail clients such
as Microsoft Outlook, is to use the Internet Mail Access Protocol (IMAP) defined
in RFC 3501. Both the HTTP and IMAP approaches allow Bob to manage folders,
maintained in Bob’s mail server. Bob can move messages into the folders he creates,
delete messages, mark messages as important, and so on.

2.4 DNS—The Internet’s Directory Service

We human beings can be identified in many ways. For example, we can be iden-
tified by the names that appear on our birth certificates. We can be identified by
our social security numbers. We can be identified by our driver’s license numbers.
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Although each can be used to identify people, within a given context one identifier
may be more appropriate than another. For example, the computers at the IRS (the
infamous tax-collecting agency in the United States) prefer to use fixed-length social
security numbers rather than birth certificate names. On the other hand, ordinary
people prefer the more mnemonic birth certificate names rather than social security
numbers. (Indeed, can you imagine saying, “Hi. My name is 132-67-9875. Please
meet my husband, 178-87-1146.”)

Just as humans can be identified in many ways, so too can Internet hosts. One
identifier for a host is its hostname. Hostnames—such as www . facebook.com,
www.google.com, gaia.cs.umass.edu—are mnemonic and are therefore
appreciated by humans. However, hostnames provide little, if any, information about
the location within the Internet of the host. (A hostname such as www.eurecom.
fr, which ends with the country code . fr, tells us that the host is probably in
France, but doesn’t say much more.) Furthermore, because hostnames can consist of
variable-length alphanumeric characters, they would be difficult to process by rout-
ers. For these reasons, hosts are also identified by so-called IP addresses.

We discuss IP addresses in some detail in Chapter 4, but it is useful to say a
few brief words about them now. An IP address consists of four bytes and has a
rigid hierarchical structure. An IP address looks like 121.7.106. 83, where each
period separates one of the bytes expressed in decimal notation from 0 to 255. An IP
address is hierarchical because as we scan the address from left to right, we obtain
more and more specific information about where the host is located in the Internet
(that is, within which network, in the network of networks). Similarly, when we scan
a postal address from bottom to top, we obtain more and more specific information
about where the addressee is located.

2.4.1 Services Provided by DNS

We have just seen that there are two ways to identify a host—by a hostname and
by an IP address. People prefer the more mnemonic hostname identifier, while
routers prefer fixed-length, hierarchically structured IP addresses. In order to rec-
oncile these preferences, we need a directory service that translates hostnames to
IP addresses. This is the main task of the Internet’s domain name system (DNS).
The DNS is (1) a distributed database implemented in a hierarchy of DNS servers,
and (2) an application-layer protocol that allows hosts to query the distributed
database. The DNS servers are often UNIX machines running the Berkeley Inter-
net Name Domain (BIND) software [BIND 2020]. The DNS protocol runs over
UDP and uses port 53.

DNS is commonly employed by other application-layer protocols, including
HTTP and SMTP, to translate user-supplied hostnames to IP addresses. As an exam-
ple, consider what happens when a browser (that is, an HTTP client), running on
some user’s host, requests the URL www. someschool.edu/index.html. In
order for the user’s host to be able to send an HTTP request message to the Web
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server www . someschool . edu, the user’s host must first obtain the IP address of
www . someschool .edu. This is done as follows.

b

The same user machine runs the client side of the DNS application.

The browser extracts the hostname, www . someschool . edu, from the URL
and passes the hostname to the client side of the DNS application.

The DNS client sends a query containing the hostname to a DNS server.

The DNS client eventually receives a reply, which includes the IP address for
the hostname.

Once the browser receives the IP address from DNS, it can initiate a TCP con-
nection to the HTTP server process located at port 80 at that IP address.

We see from this example that DNS adds an additional delay—sometimes
substantial—to the Internet applications that use it. Fortunately, as we discuss below,
the desired IP address is often cached in a “nearby” DNS server, which helps to
reduce DNS network traffic as well as the average DNS delay.

DNS provides a few other important services in addition to translating host-

names to IP addresses:

Host aliasing. A host with a complicated hostname can have one or more
alias names. For example, a hostname such as relayl.west-coast
.enterprise.com could have, say, two aliases such as enterprise.com
and www.enterprise.com. In this case, the hostname relayl
.wWwest-coast.enterprise.comissaid to be a canonical hostname. Alias
hostnames, when present, are typically more mnemonic than canonical host-
names. DNS can be invoked by an application to obtain the canonical hostname
for a supplied alias hostname as well as the IP address of the host.

Mail server aliasing. For obvious reasons, it is highly desirable that e-mail
addresses be mnemonic. For example, if Bob has an account with Yahoo Mail,
Bob’s e-mail address might be as simple as bob@yahoo.com. However, the
hostname of the Yahoo mail server is more complicated and much less mnemonic
than simply yahoo . com (for example, the canonical hostname might be some-
thing like relayl.west-coast.yahoo.com). DNS can be invoked by a
mail application to obtain the canonical hostname for a supplied alias hostname
as well as the IP address of the host. In fact, the MX record (see below) permits a
company’s mail server and Web server to have identical (aliased) hostnames; for
example, a company’s Web server and mail server can both be called enter-
prise.com.

Load distribution. DNS is also used to perform load distribution among repli-
cated servers, such as replicated Web servers. Busy sites, such as cnn . com, are
replicated over multiple servers, with each server running on a different end sys-
tem and each having a different IP address. For replicated Web servers, a set of IP
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PRINCIPLES IN PRACTICE

DNS: CRITICAL NETWORK FUNCTIONS VIA THE CLIENT-SERVER PARADIGM

Like HTTP, FTP, and SMTP, the DNS protocol is an application-layer protocol since it

(1) runs between communicating end systems using the clientserver paradigm and

(2) relies on an underlying end-to-end transport protocol to transfer DNS messages between
communicating end systems. In another sense, however, the role of the DNS is quite differ-
ent from Web, file transfer, and e-mail applications. Unlike these applications, the DNS is
not an application with which a user directly interacts. Instead, the DNS provides a core
Internet function—namely, translating hostnames to their underlying IP addresses, for user
applications and other software in the Internet. We noted in Section 1.2 that much of the
complexity in the Internet architecture is located at the “edges” of the network. The DNS,
which implements the critical name-to-address translation process using clients and servers
located at the edge of the network, is yet another example of that design philosophy.

addresses is thus associated with one alias hostname. The DNS database contains
this set of IP addresses. When clients make a DNS query for a name mapped to a
set of addresses, the server responds with the entire set of IP addresses, but rotates
the ordering of the addresses within each reply. Because a client typically sends
its HTTP request message to the IP address that is listed first in the set, DNS rota-
tion distributes the traffic among the replicated servers. DNS rotation is also used
for e-mail so that multiple mail servers can have the same alias name. Also, con-
tent distribution companies such as Akamai have used DNS in more sophisticated
ways [Dilley 2002] to provide Web content distribution (see Section 2.6.3).

The DNS is specified in RFC 1034 and RFC 1035, and updated in several addi-
tional RFCs. It is a complex system, and we only touch upon key aspects of its
operation here. The interested reader is referred to these RFCs and the book by Albitz
and Liu [Albitz 1993]; see also the retrospective paper [Mockapetris 1988], which
provides a nice description of the what and why of DNS, and [Mockapetris 2005].

2.4.2 Overview of How DNS Works

We now present a high-level overview of how DNS works. Our discussion will focus
on the hostname-to-IP-address translation service.

Suppose that some application (such as a Web browser or a mail client) running
in a user’s host needs to translate a hostname to an IP address. The application will
invoke the client side of DNS, specifying the hostname that needs to be translated.
(On many UNIX-based machines, gethostbyname () is the function call that
an application calls in order to perform the translation.) DNS in the user’s host then
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takes over, sending a query message into the network. All DNS query and reply mes-
sages are sent within UDP datagrams to port 53. After a delay, ranging from millisec-
onds to seconds, DNS in the user’s host receives a DNS reply message that provides
the desired mapping. This mapping is then passed to the invoking application. Thus,
from the perspective of the invoking application in the user’s host, DNS is a black
box providing a simple, straightforward translation service. But in fact, the black box
that implements the service is complex, consisting of a large number of DNS servers
distributed around the globe, as well as an application-layer protocol that specifies
how the DNS servers and querying hosts communicate.

A simple design for DNS would have one DNS server that contains all the map-
pings. In this centralized design, clients simply direct all queries to the single DNS
server, and the DNS server responds directly to the querying clients. Although the
simplicity of this design is attractive, it is inappropriate for today’s Internet, with its
vast (and growing) number of hosts. The problems with a centralized design include:

* A single point of failure. If the DNS server crashes, so does the entire Internet!

* Traffic volume. A single DNS server would have to handle all DNS queries (for
all the HTTP requests and e-mail messages generated from hundreds of millions
of hosts).

* Distant centralized database. A single DNS server cannot be “close to” all the
querying clients. If we put the single DNS server in New York City, then all que-
ries from Australia must travel to the other side of the globe, perhaps over slow
and congested links. This can lead to significant delays.

* Maintenance. The single DNS server would have to keep records for all Internet
hosts. Not only would this centralized database be huge, but it would have to be
updated frequently to account for every new host.

In summary, a centralized database in a single DNS server simply doesn’t scale.
Consequently, the DNS is distributed by design. In fact, the DNS is a wonderful
example of how a distributed database can be implemented in the Internet.

A Distributed, Hierarchical Database

In order to deal with the issue of scale, the DNS uses a large number of servers,
organized in a hierarchical fashion and distributed around the world. No single DNS
server has all of the mappings for all of the hosts in the Internet. Instead, the map-
pings are distributed across the DNS servers. To a first approximation, there are three
classes of DNS servers—root DNS servers, top-level domain (TLD) DNS servers,
and authoritative DNS servers—organized in a hierarchy as shown in Figure 2.17.
To understand how these three classes of servers interact, suppose a DNS client
wants to determine the IP address for the hostname www . amazon . com. To a first
approximation, the following events will take place. The client first contacts one of
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Figure 2.17 + Portion of the hierarchy of DNS servers

the root servers, which returns IP addresses for TLD servers for the top-level domain
com. The client then contacts one of these TLD servers, which returns the IP address
of an authoritative server for amazon . com. Finally, the client contacts one of the
authoritative servers for amazon . com, which returns the IP address for the host-
name www . amazon.com. We’ll soon examine this DNS lookup process in more
detail. But let’s first take a closer look at these three classes of DNS servers:

* Root DNS servers. There are more than 1000 root servers instances scattered all
over the world, as shown in Figure 2.18. These root servers are copies of 13 dif-
ferent root servers, managed by 12 different organizations, and coordinated
through the Internet Assigned Numbers Authority [TANA 2020]. The full list
of root name servers, along with the organizations that manage them and their
IP addresses can be found at [Root Servers 2020]. Root name servers provide
the IP addresses of the TLD servers.

e Top-level domain (TLD) servers. For each of the top-level domains—top-level
domains such as com, org, net, edu, and gov, and all of the country top-level
domains such as uk, fr, ca, and jp—there is TLD server (or server cluster). The
company Verisign Global Registry Services maintains the TLD servers for the
com top-level domain, and the company Educause maintains the TLD servers for
the edu top-level domain. The network infrastructure supporting a TLD can be
large and complex; see [Osterweil 2012] for a nice overview of the Verisign net-
work. See [TLD list 2020] for a list of all top-level domains. TLD servers provide
the IP addresses for authoritative DNS servers.

* Authoritative DNS servers. Every organization with publicly accessible hosts
(such as Web servers and mail servers) on the Internet must provide publicly
accessible DNS records that map the names of those hosts to IP addresses. An
organization’s authoritative DNS server houses these DNS records. An organi-
zation can choose to implement its own authoritative DNS server to hold these
records; alternatively, the organization can pay to have these records stored in an
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Figure 2.18 ¢ DNS root servers in 2020

authoritative DNS server of some service provider. Most universities and large
companies implement and maintain their own primary and secondary (backup)
authoritative DNS server.

The root, TLD, and authoritative DNS servers all belong to the hierarchy of
DNS servers, as shown in Figure 2.17. There is another important type of DNS
server called the local DNS server. A local DNS server does not strictly belong to
the hierarchy of servers but is nevertheless central to the DNS architecture. Each
ISP—such as a residential ISP or an institutional ISP—has a local DNS server (also
called a default name server). When a host connects to an ISP, the ISP provides
the host with the IP addresses of one or more of its local DNS servers (typically
through DHCP, which is discussed in Chapter 4). You can easily determine the IP
address of your local DNS server by accessing network status windows in Win-
dows or UNIX. A host’s local DNS server is typically “close to” the host. For an
institutional ISP, the local DNS server may be on the same LAN as the host; for a
residential ISP, it is typically separated from the host by no more than a few rout-
ers. When a host makes a DNS query, the query is sent to the local DNS server,
which acts a proxy, forwarding the query into the DNS server hierarchy, as we’ll
discuss in more detail below.

Let’s take a look at a simple example. Suppose the host cse . nyu. edu desires
the IP address of gaia.cs.umass.edu. Also suppose that NYU’s local DNS
server for cse.nyu.edu is called dns.nyu.edu and that an authoritative DNS
server for gaia.cs.umass.edu is called dns.umass.edu. As shown in
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Figure 2.19 + Interaction of the various DNS servers

Figure 2.19, the host cse.nyu.edu first sends a DNS query message to its local
DNS server, dns.nyu.edu. The query message contains the hostname to be trans-
lated, namely, gaia.cs.umass.edu. The local DNS server forwards the query
message to a root DNS server. The root DNS server takes note of the edu suffix and
returns to the local DNS server a list of IP addresses for TLD servers responsible
for edu. The local DNS server then resends the query message to one of these TLD
servers. The TLD server takes note of the umass.edu suffix and responds with
the IP address of the authoritative DNS server for the University of Massachusetts,
namely, dns.umass.edu. Finally, the local DNS server resends the query mes-