
Homa
Data Center Transport Protocol

Presentation 2

Harsh Kapadia



Recap: Problems with TCP in the Data Center

● Stream orientation
● Connection orientation
● Bandwidth sharing (Fair Scheduling)
● Sender-driven Congestion Control
● In-order packet delivery



Recap: Message vs Packet

https://trustyetc.com/networking/TCPIP.htm


Recap: Homa Features

● Message-oriented (RPCs)
● Connectionless
● Shortest Remaining Processing Time (SRPT) Scheduling
● Receiver-driven Congestion Control
● High out-of-order packet tolerance
● No per-packet acknowledgements
● At-least-once semantics



Recap: Sender vs Receiver

● Client → Server
○ Sender: Client
○ Receiver: Server

● Server → Receiver
○ Sender: Server
○ Receiver: Client



Homa Packet Types
● DATA(rpc_id, data, offset, self_prio, m_len)

○ Sent by sender or receiver
○ Can ACK one RPC

● GRANT(rpc_id, offset, exp_prio)
○ Sent by receiver

● RESEND(rpc_id, offset, len, exp_prio)
○ Sent by receiver

● UNKNOWN(rpc_id)
○ Sent by sender or receiver

● BUSY(rpc_id)
○ Sent by sender

● CUTOFFS(rpc_id, exp_unsched_prio)
○ Sent by receiver

● ACK(rpc_id)
○ Sent by sender
○ Can ACK multiple RPCs

● NEED_ACK(rpc_id)
○ Sent by receiver

● FREEZE
● BOGUS



Homa API

● homa_send()
○ Send a request message to initiate a RPC.

● homa_reply()
○ Send a response message for a RPC previously received.

● homa_abort()
○ Terminate the execution of a RPC.



Homa Working
● RPC Request, RPC Response
● DATA, GRANT, ACK, NEED_ACK
● Priority levels: P0 (lowest) to P7 (highest)



Homa Working
● RPC Request
● DATA, GRANT, RESEND, UNKNOWN



Homa Working
● RPC Request
● DATA, GRANT, RESEND, BUSY



Homa Working
● RPC Request
● DATA, RESEND, UNKNOWN
● Need to confirm this scenario



Recap: Homa Protocol 
Overview

● On receiving message from top layer, 
sender blindly sends unscheduled portion

● Sender can send further scheduled DATA 
packets only if receiver authorises through 
GRANT packet

● GRANT usually requests for ‘RTT bytes’ 
worth outstanding data to keep 
transmission uninterrupted



Homa Linux Architecture

● Transmit (top): homa_send() → copy 
packets → TSO/GSO → IP layer → 
NIC

● Receive (bottom): NIC (RSS) → 
Interrupt → NAPI (GRO, SoftIRQ core 
choosing) → SoftIRQ (network stack 
traversal) → copy packets → 
homa_recv()



Data Center TCP (DCTCP)

● Makes use of Explicit Congestion Notification (ECN) to calculate how many 
bytes were affected and slows down based on that, rather than the fixed 
backoff that generic versions of TCP (Reno, CUBIC, etc.) have.



Experimentation Problems

● I was not able to get GENI TCP throughput above 100 Mbps.
○ Need ~25 Gbps
○ CloudLab

● I was not able to build the Homa module due to missing Linux kernel header 
files in Ubuntu 18.04 and 20.04 images on GENI.

○ Needs latest Ubuntu releases
■ Ubuntu 22.04 LTS image was not available on GENI
■ Broke multiple VMs trying to upgrade

○ Using CloudLab could solve problems



Tentative Future Plans

● Set up CloudLab environment
● Build Homa module
● Understand Homa module experiments and scripts
● Conduct Homa experiments
● Wireshark analysis of Homa
● Homa module code dive
● Try to form algorithm
● Try to make state machine



Resources

● networking.harshkapadia.me/homa

https://networking.harshkapadia.me/homa


Thank you!


