Homa

Data Center Transport Protocol
Presentation 3

Harsh Kapadia

Recap: Message vs Packet

My Network Message

MY N Ntebsalie

Message broken into packets
for transmission over network

https://trustyetc.com/networking/TCPIP.htm

Recap: Homa Features

Message-oriented (RPCs)

Connectionless

Shortest Remaining Processing Time (SRPT) Scheduling
Receiver-driven Congestion Control

High out-of-order packet tolerance

No per-packet acknowledgements

At-least-once semantics

Recap: Sender vs Receiver

e Client — Server

o Sender: Client

o Receiver: Server
e Server — Receiver

o Sender: Server
o Receiver: Client

Recap: Homa Protocol
Overview

e On receiving message from top layer,
sender blindly sends unscheduled portion

e Sender can send further scheduled DATA
packets only if receiver authorises through
GRANT packet

e GRANT usually requests for ‘RTT bytes’
worth outstanding data to keep
transmission uninterrupted

Unscheduled Scheduled

N A
N 0000]

/| Tm2

»{Sendert

100110101

... Datacenter
~a Network ..~

Y
Receiver
Figure 2: Overview of the Homa protocol. Senderl is transmitting
scheduled packets of message m/, while Sender2 is transmitting
unscheduled packets of m2.

Recap: Homa Working

RPC Request, RPC Response
DATA, GRANT, ACK, NEED ACK
Priority levels: PO (lowest) to P7 (highest)

Client

RPC Request

RPC Response

Server

DATA(1 - 10, P7, m_len=40) (Unscheduled)

GRANT(11 - 30, exp_prio=P4, P7)

A

DATA(11 - 20, P4) (Scheduled)

DATA(21 - 30, P4) (Scheduled)

GRANT(31 - 40, exp_prio=P6, P7)

A

DATA(31 - 40, P6) (Scheduled)

DATA (Unscheduled)

A

GRANT

DATA (Scheduled)

A

NEED_ACK(exp_rpc=rpc_id_1)

ACK(rpc_id_1,mpc_id_2, ..)

Recap: Homa Linux
Architecture

e Transmit (top): homa send() — copy
packets —» TSO/GSO — Homa, IP
layer — NIC

e Receive (bottom): NIC (RSS) —
Interrupt — NAPI (GRO, SoftIRQ core
choosing) — SoftIRQ (network stack
traversal) — copy packets —

homa recv ()

user ; kernel

o » Pacer Thread
™ Homa Y
oma S

k 4 »

Syscal
Application Thread SoftiRQ NAPI Interrupt
Figure 2: Structure of Homa/Linux. Homa components are shown in
blue; existing Linux kermel modules are in yellow. Gray areas repre-
sent different cores. Only the primary sending and receiving paths are
shown; other Homa elements such as the pacer thread and timer thread

also transmit packets.

Homa Algorithms

Sorting RPCs and Peers

Calculating Scheduled Priorities
Calculating Unscheduled Priorities
Calculating rtt bytes

Calculating GRANT Offset

Calculating Unscheduled Bytes Offset

Homa Algorithms

Sorting RPCs and Peers

Calculating Scheduled Priorities
Calculating Unscheduled Priorities
Calculating rtt bytes

Calculating GRANT Offset

Calculating Unscheduled Bytes Offset

Sorting RPCs and Peers

® homa state — grantable peers

® peer —> grantable rpcs

e Sorting precedence for RPCs and peers

a. bytes remaning
b. birth time

° bytes_remainingl,=3 priorityT‘
¢ birth time l, (oldery = priority T (Tie-breaker mechanism)

e Sorting order

a. RPCs
b. Peers

position_rpc.c

position_rpc(homa_state, rpc_to_check) {
peer_to_check = rpc_to_check->peer;

while(rpc in peer_to_check->grantable_rpcs) {
if(rpc->bytes_remaining > rpc_to_check->bytes_remaining) {

// Add “rpc_to_check® before “rpc’.

position_peer(homa_state, peer_to_check);

break;
)
else if(rpc->bytes_remaining == rpc_to_check->bytes_remaining) {
if(rpc->birth > rpc_to_check->birth) {
// Add “rpc_to_check™ before “rpc’.
position_peer(homa_state, peer_to_check);
break;
}
}

position_peer.c

position_peer(homa_state, peer_to_check) {
first_rpc_in_peer_to_check = get_list_head(peer_to_check);

while(peer in homa_state->grantable_peers) {
first_rpc_in_peer = get_list_head(peer);

if(first_rpc_in_peer->bytes_remaining > first_rpc_in_peer_to_check->bytes_remaining) {
// Add “peer_to_check™ before “peer’.

break;

}
else if(first_rpc_in_peer->bytes_remaining ==
first_rpc_in_peer_to_check->bytes_remaining) {
if(first_rpc_in_peer->birth > first_rpc_in_peer_to_check->birth) {
// Add “peer_to_check before “peer’.

break;

RPC and Peer Sorting Timing

homa softirg(

\4

homa pkt dispatch()

homa check grantable ()
Contains sorting logic

Homa Algorithms

Sorting RPCs and Peers

Calculating Scheduled Priorities
Calculating Unscheduled Priorities
Calculating rtt bytes

Calculating GRANT Offset

Calculating Unscheduled Bytes Offset

Calculating Scheduled Priorities

e Eight default priority levels: O (lowest) to 7 (highest)
e max sched prio splits levels between scheduled
and unscheduled message (DATA packet) priorities

e Message length l = Priority T
e Example:
Levels: 0to 7
max sched prio=95
= Sched prio levels = 0 to 5 (both inclusive)
= Unsched prio levels = 6 and 7
e To accommodate higher priority messages for SRPT,
Homa assigns lowest possible priority to each RPC
e Calculated individually for first RPC of every
grantable peer
o Only first RPC of every grantable peer is
granted

o O O O

=
0
1
Scheduled B

message priorities

(DATA packeis) 3
4

- max sched prio

Unscheduled

message priorities

(DATA packets)

Control packets always
sent with highest priority

set_scheduled_data_priority.c

set_scheduled_data_priority(homa_state) {
rank = 0;
max_grants = 10;
max_scheduled_priority = homa_state->max_sched_prio;
num_grantable_peers = homa_state->num_grantable_peers;

while(peer in homa_state->grantable_peers) {
rank++;

priority = max_scheduled_priority - (rank - 1);

total_levels = max_scheduled_priority + 1;
extra_levels = total_levels - num_grantable_peers;

if (extra_levels >= 0) {
priority = priority - extra_levels;

}

if (priority < 0)
priority = 0;

}

// Assign ‘priority’ to “GRANT packet.

if(rank == max_grants) {
break;

Lowest Priority Assignment

Scheduled
message priorities

Unscheduled
message priorities

D,

»,

0

1

2

shift by two
extra_ levels 3
| >

4

max_sched_prio 5
6

Scheduled Priority Calculation homa_rpc_free () homa_rpc_abort ()
Timing

e Alt. title: ‘GRANT Packet Transmission
Timing’
e max sched prio setby
unsched cutoffs array
o More info. in slides ahead
e Same function call tree for GRANT
offset calculation
o More info. in slides ahead

homa remove from grantable (

)

Contains sstting logic

homa softirg()

homa send grants ()
Contains scheduled priority calculation logic
(and GRANT offset calculation logic)

Homa Algorithms

Sorting RPCs and Peers

Calculating Scheduled Priorities
Calculating Unscheduled Priorities
Calculating rtt bytes

Calculating GRANT Offset

Calculating Unscheduled Bytes Offset

Calculating Unscheduled

. g .
Priorities . N
e Decided by unsched cutoffs array Scheduled 1
e Statically defined values for unscheduled message priorities
(DATA packets) 2
messages (DATA packets)
o Control packets always sent at
highest priority level o 3 BOE. Bohexk prLo
® max_sched prio = . <= HOMA MAX MESSAGE LENGTH
HOMA MAX MESSAGE LENGTH - 1 (1,000,000) remaining bytes
Unscheduled 5 <= 15,000 remaining bytes
message priorities
(DATA packets) 6 <= 2,800 remaining bytes
Control packets always .
B S 7 <= 200 remaining bytes
sent with highest priority I

unsched cutoffs array initialization
cutoff version =1

homa_state.c

HOMA_MAX_PRIORITIES; // = 8

homa_state->num_priorities

C u tOffS I n iti a I izati O n homa_state->max_sched_prio

homa_state->unsched_cutoffs[HOMA_MAX_PRIORITIES-1]

HOMA_MAX_PRIORITIES - 5; // =3 (6 - 3 | 4 - 7)

200; // Level 7

Recelver Incomlng DATA packet homa_state->unsched_cutoffs[HOMA_MAX_PRIORITIES-2] = 2800; // Level 6
. . . homa_state->unsched_cutoffs[HOMA_MAX_PRIORITIES-3] = 15000; // Level 5
cutoff version is checked with homa_state->unsched_cutoffs[HOMA_MAX_PRIORITIES-4] = HOMA_MAX_MESSAGE_LENGTH;

homa state->cutoff version /] Level 4

homa_state->cutoff_version = 1;

Sender: Outgoing DATA packet peer.c

cutoff version is added from peer->unsched_cutoffs[HOMA_MAX_PRIORITIES-1]
peer->unsched_cutoffs[HOMA_MAX_PRIORITIES-2]

0; // Level 7
INT_MAX; // Level 6

peer->cutoff version

. peer->cutoff_version = 0; // No 'CUTOFFS packet ever received
(Every receiver will have a different priority,

so each peer structure on sender has to peer->last_update_jiffies = 0;
track its receiver data.)

Sending DATA Packets

sender.c

e |Initialized cutoff version if(DATA packet) {

= 0 will cause a mismatch if(rpc->bytes_to_be_sent_offset < rpc->unscheduled_bytes_offset) {
with receiver. which is priority = get_unscheduled_priority(rpc->total_msg_length);
e g . }
initialized with
else {
cutoff version = 1. priority = rpc->scheduled_priority;
e \Version mismatch causes t
. }
receiver to send CUTOFFS i 1
packet. priority = homa_state->total_num_of_priorities - 1;

o More info. on next slide. }

Receiving DATA Packets
e Receiver will always have latest receere
cutoff version asitis the
driver of communication and it

if(incoming_pkt_data_header->cutoff_version != homa_state->cutoff_version) {
// Implies that the sender has a stale "CUTOFFS packet.

updates priorities if(time_now != peer->last_cutoffs_packet_send_time) {
)) e '_ /* Send updated “homa_state->unsched_cutoffs array and
e Time (Unlt: JIferS) is checked to * “homa_state->cutoff_version™ in a 'CUTOFFS packet to peer.
not send multiple CUTOFFS K
paCketS to same sender when // Update time (jiffies) when last “CUTOFFS packet was sent.
}

packets are continuously
arriving

Homa Algorithms

Sorting RPCs and Peers

Calculating Scheduled Priorities
Calculating Unscheduled Priorities
Calculating rtt bytes

Calculating GRANT Offset

Calculating Unscheduled Bytes Offset

Calculating rtt bytes

e Helps in keeping link utilization ~100%
e Unfortunately, currently a static config. parameter in receiver for all its peers
e Should ideally be frequently dynamically calculated per peer by receiver

Homa Algorithms

Sorting RPCs and Peers

Calculating Scheduled Priorities
Calculating Unscheduled Priorities
Calculating rtt bytes

Calculating GRANT Offset

Calculating Unscheduled Bytes Offset

Calculating GRANT Offset

e Offset indicates permission to send bytes up to a particular bytes
e offset S total msg length

e Optimal amount of newly granted data: rtt bytes
o Helps to keep link utilization ~100%

e Example (At sender)
o Total message length = 100
o Sent data offset = 20
o GRANT offset received = 45
o = Data sent = bytes 21 to 45 (should be ~rtt bytes)

set_data_offset.c

set_data_offset(homa_state) {
counter = 0;
max_grants = 10;
total_bytes_available_to_grant = homa_state->max_incoming - homa_state->total_incoming;

if(total_bytes_available_to_grant <= 0) {
return;

while(peer in homa_state->grantable_peers) {
counter++;

first_rpc_in_peer = get_list_head(peer);

rpc_bytes_received = first_rpc_in_peer->total_msg_length -
first_rpc_in_peer->msg_bytes_remaining;

offset = rpc_bytes_received + homa_state->rtt_bytes;

if(offset > first_rpc_in_peer->total_msg_length) {
offset = first_rpc_in_peer->total_msg_length;

increment = offset - first_rpc_in_peer->total_incoming_bytes;

continued...

...continued

if (increment <= 0) {

continue;

r

if (total_bytes_available_to_grant <= 0) {
break;

}

if (increment > total_bytes_available_to_grant) {
increment = total_bytes_available_to_grant;
offset = first_rpc_in_peer->total_incoming_bytes + increment;

first_rpc_in_peer->total_incoming_bytes = offset;
total_bytes_available_to_grant = total_bytes_available_to_grant - increment;
// Assign ‘offset’ to 'GRANT packet.

if(counter == max_grants) {
break;

homa rpc free() homa rpc abort ()

GRANT Offset Calculation Timing

e Alt. title: ‘GRANT Packet Transmission
Timing’
e max sched prio setby
unsched cutoffs array
o More info. in slides ahead
e Same function call tree for Scheduled
Priority Calculation
o As already seen in slides before

homa remove from grantable (

)

Contains sstting logic

homa softirg()

homa send grants ()
Contains GRANT offset calculation logic
(and scheduled priority calculation logic)

Homa Algorithms

Sorting RPCs and Peers

Calculating Scheduled Priorities
Calculating Unscheduled Priorities
Calculating rtt bytes

Calculating GRANT Offset

Calculating Unscheduled Bytes Offset

Calculating Unscheduled Bytes Offset

e Calculated at sender

e Example (At sender)
o Total message length = 100
o Calculated unschedules bytes offset = 20
o = Data sent = bytes 1 to 20 (should at least be ~rtt bytes)

e Rationale behind formula to decide unscheduled bytes offset not clear

set_unscheduled_byte_offset.c

set_unscheduled_byte_offset(rpc) {
mss = mtu - ip_header_length - data_header_length;

if(rpc->total_msg_length <= mss) {
rpc->unscheduled_bytes = rpc->total_msg_length;

r

else {
gso_pkt_data = pkts_per_gso * mss;
rpc->unscheduled_bytes = rpc->rtt_bytes + gso_pkt_data - 1;
extra_bytes = rpc->unscheduled_bytes % gso_pkt_data;
rpc->unscheduled_bytes = rpc->unscheduled_bytes - extra_bytes;
if (rpc->unscheduled_bytes > rpc->total_msg_length) {

rpc->unscheduled_bytes = rpc->total_msg_length;

}

}

Unscheduled Bytes Offset Calculation Timing

homa sendmsg (

)

Caller?

homa message out init ()
Contains unscheduled bytes offset
calculation logic

Recap: Homa Algorithms

Sorting RPCs and Peers

Calculating Scheduled Priorities
Calculating Unscheduled Priorities
Calculating rtt bytes

Calculating GRANT Offset

Calculating Unscheduled Bytes Offset

Things That Did Not Work Out

e Building Homa module
o Multiple errors that could not be debugged
o Will have to ask Prof. Ousterhout for help
e Setting up CloudLab environment

o Sign in successful
o Allocating exact infrastructure with Switch control tricky
o HomaModule GitHub repo does not have sufficient instructions to set up environment

https://github.com/PlatformLab/HomaModule

Tentative Future Plans

Ask Prof. Ousterhout for help
Set up CloudLab environment
Build Homa module

Conduct Homa experiments

Resources

e Homa: networking.harshkapadia.me/homa

e Code image generator: ray.so
e Array diagrams: draw.io

https://networking.harshkapadia.me/homa
https://ray.so
https://draw.io

Thank you!

