
Homa
Data Center Transport Protocol

Presentation 3

Harsh Kapadia

Recap: Message vs Packet

https://trustyetc.com/networking/TCPIP.htm

Recap: Homa Features

● Message-oriented (RPCs)
● Connectionless
● Shortest Remaining Processing Time (SRPT) Scheduling
● Receiver-driven Congestion Control
● High out-of-order packet tolerance
● No per-packet acknowledgements
● At-least-once semantics

Recap: Sender vs Receiver

● Client → Server
○ Sender: Client
○ Receiver: Server

● Server → Receiver
○ Sender: Server
○ Receiver: Client

Recap: Homa Protocol
Overview

● On receiving message from top layer,
sender blindly sends unscheduled portion

● Sender can send further scheduled DATA
packets only if receiver authorises through
GRANT packet

● GRANT usually requests for ‘RTT bytes’
worth outstanding data to keep
transmission uninterrupted

Recap: Homa Working
● RPC Request, RPC Response
● DATA, GRANT, ACK, NEED_ACK
● Priority levels: P0 (lowest) to P7 (highest)

Recap: Homa Linux
Architecture

● Transmit (top): homa_send() → copy
packets → TSO/GSO → Homa, IP
layer → NIC

● Receive (bottom): NIC (RSS) →
Interrupt → NAPI (GRO, SoftIRQ core
choosing) → SoftIRQ (network stack
traversal) → copy packets →
homa_recv()

Homa Algorithms

● Sorting RPCs and Peers
● Calculating Scheduled Priorities
● Calculating Unscheduled Priorities
● Calculating rtt_bytes
● Calculating GRANT Offset
● Calculating Unscheduled Bytes Offset

Homa Algorithms

● Sorting RPCs and Peers
● Calculating Scheduled Priorities
● Calculating Unscheduled Priorities
● Calculating rtt_bytes
● Calculating GRANT Offset
● Calculating Unscheduled Bytes Offset

Sorting RPCs and Peers

● homa_state → grantable_peers

● peer → grantable_rpcs

● Sorting precedence for RPCs and peers
a. bytes_remaning
b. birth_time

● bytes_remaining ↓ ⇒ priority ↑
● birth_time ↓ (older) ⇒ priority ↑ (Tie-breaker mechanism)

● Sorting order
a. RPCs
b. Peers

homa_softirq(
)

homa_pkt_dispatch()

homa_data_pkt()

homa_check_grantable()
Contains sorting logic

RPC and Peer Sorting Timing

Homa Algorithms

● Sorting RPCs and Peers
● Calculating Scheduled Priorities
● Calculating Unscheduled Priorities
● Calculating rtt_bytes
● Calculating GRANT Offset
● Calculating Unscheduled Bytes Offset

Calculating Scheduled Priorities

● Eight default priority levels: 0 (lowest) to 7 (highest)
● max_sched_prio splits levels between scheduled

and unscheduled message (DATA packet) priorities

● Message length ↓ ⇒ Priority ↑
● Example:

○ Levels: 0 to 7
○ max_sched_prio = 5
○ ⇒ Sched prio levels = 0 to 5 (both inclusive)
○ ⇒ Unsched prio levels = 6 and 7

● To accommodate higher priority messages for SRPT,
Homa assigns lowest possible priority to each RPC

● Calculated individually for first RPC of every
grantable peer

○ Only first RPC of every grantable peer is
granted

Lowest Priority Assignment

homa_softirq()

homa_rpc_free()

homa_remove_from_grantable(
)

Contains sorting logic

homa_send_grants()
Contains scheduled priority calculation logic

(and GRANT offset calculation logic)

Scheduled Priority Calculation
Timing

homa_rpc_abort()

● Alt. title: ‘GRANT Packet Transmission
Timing’

● max_sched_prio set by
unsched_cutoffs array

○ More info. in slides ahead
● Same function call tree for GRANT

offset calculation
○ More info. in slides ahead

Homa Algorithms

● Sorting RPCs and Peers
● Calculating Scheduled Priorities
● Calculating Unscheduled Priorities
● Calculating rtt_bytes
● Calculating GRANT Offset
● Calculating Unscheduled Bytes Offset

Calculating Unscheduled
Priorities

● Decided by unsched_cutoffs array
● Statically defined values for unscheduled

messages (DATA packets)
○ Control packets always sent at

highest priority level
● max_sched_prio =

HOMA_MAX_MESSAGE_LENGTH - 1

unsched_cutoffs array initialization
cutoff_version = 1

Cutoffs Initialization
Receiver: Incoming DATA packet
cutoff_version is checked with
homa_state->cutoff_version

Sender: Outgoing DATA packet
cutoff_version is added from
peer->cutoff_version

(Every receiver will have a different priority,
so each peer structure on sender has to
track its receiver data.)

Sending DATA Packets

● Initialized cutoff_version
= 0 will cause a mismatch
with receiver, which is
initialized with
cutoff_version = 1 .

● Version mismatch causes
receiver to send CUTOFFS
packet.

○ More info. on next slide.

Receiving DATA Packets

● Receiver will always have latest
cutoff_version as it is the
driver of communication and it
updates priorities.

● Time (unit: Jiffies) is checked to
not send multiple CUTOFFS
packets to same sender when
packets are continuously
arriving

Homa Algorithms

● Sorting RPCs and Peers
● Calculating Scheduled Priorities
● Calculating Unscheduled Priorities
● Calculating rtt_bytes
● Calculating GRANT Offset
● Calculating Unscheduled Bytes Offset

Calculating rtt_bytes

● Helps in keeping link utilization ~100%
● Unfortunately, currently a static config. parameter in receiver for all its peers
● Should ideally be frequently dynamically calculated per peer by receiver

Homa Algorithms

● Sorting RPCs and Peers
● Calculating Scheduled Priorities
● Calculating Unscheduled Priorities
● Calculating rtt_bytes
● Calculating GRANT Offset
● Calculating Unscheduled Bytes Offset

Calculating GRANT Offset

● Offset indicates permission to send bytes up to a particular bytes
● offset ≤ total_msg_length
● Optimal amount of newly granted data: rtt_bytes

○ Helps to keep link utilization ~100%
● Example (At sender)

○ Total message length = 100
○ Sent data offset = 20
○ GRANT offset received = 45
○ ⇒ Data sent = bytes 21 to 45 (should be ~rtt_bytes)

continued…

…continued

homa_softirq()

homa_rpc_free()

homa_remove_from_grantable(
)

Contains sorting logic

homa_send_grants()
Contains GRANT offset calculation logic
(and scheduled priority calculation logic)

GRANT Offset Calculation Timing
homa_rpc_abort()

● Alt. title: ‘GRANT Packet Transmission
Timing’

● max_sched_prio set by
unsched_cutoffs array

○ More info. in slides ahead
● Same function call tree for Scheduled

Priority Calculation
○ As already seen in slides before

Homa Algorithms

● Sorting RPCs and Peers
● Calculating Scheduled Priorities
● Calculating Unscheduled Priorities
● Calculating rtt_bytes
● Calculating GRANT Offset
● Calculating Unscheduled Bytes Offset

Calculating Unscheduled Bytes Offset

● Calculated at sender
● Example (At sender)

○ Total message length = 100
○ Calculated unschedules bytes offset = 20
○ ⇒ Data sent = bytes 1 to 20 (should at least be ~rtt_bytes)

● Rationale behind formula to decide unscheduled bytes offset not clear

homa_sendmsg(
)

Caller?

homa_message_out_init()
Contains unscheduled bytes offset

calculation logic

Unscheduled Bytes Offset Calculation Timing

Recap: Homa Algorithms

● Sorting RPCs and Peers
● Calculating Scheduled Priorities
● Calculating Unscheduled Priorities
● Calculating rtt_bytes
● Calculating GRANT Offset
● Calculating Unscheduled Bytes Offset

Things That Did Not Work Out

● Building Homa module
○ Multiple errors that could not be debugged
○ Will have to ask Prof. Ousterhout for help

● Setting up CloudLab environment
○ Sign in successful
○ Allocating exact infrastructure with Switch control tricky
○ HomaModule GitHub repo does not have sufficient instructions to set up environment

https://github.com/PlatformLab/HomaModule

Tentative Future Plans

● Ask Prof. Ousterhout for help
● Set up CloudLab environment
● Build Homa module
● Conduct Homa experiments

Resources

● Homa: networking.harshkapadia.me/homa
● Code image generator: ray.so
● Array diagrams: draw.io

https://networking.harshkapadia.me/homa
https://ray.so
https://draw.io

Thank you!

