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Recap: Message vs Packet

My Network Message

MY N Ntebsalie

Message broken into packets
for transmission over network



https://trustyetc.com/networking/TCPIP.htm

Recap: Homa Features

Message-oriented (RPCs)

Connectionless

Shortest Remaining Processing Time (SRPT) Scheduling
Receiver-driven Congestion Control

High out-of-order packet tolerance

No per-packet acknowledgements

At-least-once semantics



Recap: Sender vs Receiver

e Client — Server

o Sender: Client

o Receiver: Server
e Server — Receiver

o Sender: Server
o Receiver: Client



Recap: Homa Protocol
Overview

e On receiving message from top layer,
sender blindly sends unscheduled portion

e Sender can send further scheduled DATA
packets only if receiver authorises through
GRANT packet

e  GRANT usually requests for ‘RTT bytes’
worth outstanding data to keep
transmission uninterrupted
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Figure 2: Overview of the Homa protocol. Senderl is transmitting
scheduled packets of message m/, while Sender2 is transmitting
unscheduled packets of m2.




Recap: Homa Working

RPC Request, RPC Response
DATA, GRANT, ACK, NEED ACK
Priority levels: PO (lowest) to P7 (highest)

Client

RPC Request

RPC Response

Server

DATA(1 - 10, P7, m_len=40) (Unscheduled)

GRANT(11 - 30, exp_prio=P4, P7)

A

DATA(11 - 20, P4) (Scheduled)

DATA(21 - 30, P4) (Scheduled)

GRANT(31 - 40, exp_prio=P6, P7)

A

DATA(31 - 40, P6) (Scheduled)

DATA (Unscheduled)

A

GRANT

DATA (Scheduled)

A

NEED_ACK(exp_rpc=rpc_id_1)

ACK(rpc_id_1,mpc_id_2, ..)




Recap: Homa Linux
Architecture

e Transmit (top): homa send() — copy
packets —» TSO/GSO — Homa, IP
layer — NIC

e Receive (bottom): NIC (RSS) —
Interrupt — NAPI (GRO, SoftIRQ core
choosing) — SoftIRQ (network stack
traversal) — copy packets —

homa recv ()

user ; kernel

o » Pacer Thread
™ Homa Y
oma S

k 4 »

Syscal
Application Thread SoftiRQ NAPI Interrupt
Figure 2: Structure of Homa/Linux. Homa components are shown in
blue; existing Linux kermel modules are in yellow. Gray areas repre-
sent different cores. Only the primary sending and receiving paths are
shown; other Homa elements such as the pacer thread and timer thread

also transmit packets.
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Sorting RPCs and Peers

® homa state — grantable peers

® peer —> grantable rpcs

e Sorting precedence for RPCs and peers

a. bytes remaning
b. birth time

° bytes_remainingl,=3 priorityT‘
¢ birth time l, (oldery = priority T (Tie-breaker mechanism)

e Sorting order

a. RPCs
b. Peers



position_rpc.c

position_rpc(homa_state, rpc_to_check) {
peer_to_check = rpc_to_check->peer;

while(rpc in peer_to_check->grantable_rpcs) {
if(rpc->bytes_remaining > rpc_to_check->bytes_remaining) {

// Add “rpc_to_check® before “rpc’.

position_peer(homa_state, peer_to_check);

break;
)
else if(rpc->bytes_remaining == rpc_to_check->bytes_remaining) {
if(rpc->birth > rpc_to_check->birth) {
// Add “rpc_to_check™ before “rpc’.
position_peer(homa_state, peer_to_check);
break;
}
}



position_peer.c

position_peer(homa_state, peer_to_check) {
first_rpc_in_peer_to_check = get_list_head(peer_to_check);

while(peer in homa_state->grantable_peers) {
first_rpc_in_peer = get_list_head(peer);

if(first_rpc_in_peer->bytes_remaining > first_rpc_in_peer_to_check->bytes_remaining) {
// Add “peer_to_check™ before “peer’.

break;

}
else if(first_rpc_in_peer->bytes_remaining ==
first_rpc_in_peer_to_check->bytes_remaining) {
if(first_rpc_in_peer->birth > first_rpc_in_peer_to_check->birth) {
// Add “peer_to_check  before “peer’.

break;



RPC and Peer Sorting Timing

homa softirg(

\4

homa pkt dispatch()

homa check grantable ()
Contains sorting logic
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Calculating Scheduled Priorities

e Eight default priority levels: O (lowest) to 7 (highest)
e max sched prio splits levels between scheduled
and unscheduled message (DATA packet) priorities

e Message length l = Priority T
e Example:
Levels: 0to 7
max sched prio=95
= Sched prio levels = 0 to 5 (both inclusive)
= Unsched prio levels = 6 and 7
e To accommodate higher priority messages for SRPT,
Homa assigns lowest possible priority to each RPC
e Calculated individually for first RPC of every
grantable peer
o  Only first RPC of every grantable peer is
granted

o O O O

=
0
1
Scheduled B

message priorities

(DATA packeis) 3
4

- max sched prio

Unscheduled

message priorities

(DATA packets)

Control packets always
sent with highest priority




set_scheduled_data_priority.c

set_scheduled_data_priority(homa_state) {
rank = 0;
max_grants = 10;
max_scheduled_priority = homa_state->max_sched_prio;
num_grantable_peers = homa_state->num_grantable_peers;

while(peer in homa_state->grantable_peers) {
rank++;

priority = max_scheduled_priority - (rank - 1);

total_levels = max_scheduled_priority + 1;
extra_levels = total_levels - num_grantable_peers;

if (extra_levels >= 0) {
priority = priority - extra_levels;

}

if (priority < 0)
priority = 0;

}

// Assign ‘priority’ to “GRANT packet.

if(rank == max_grants) {
break;



Lowest Priority Assignment

Scheduled
message priorities

Unscheduled
message priorities

D,

»,

0

1

2

shift by two
extra_ levels 3
| >

4

max_sched_prio 5
6




Scheduled Priority Calculation homa_rpc_free () homa_rpc_abort ()
Timing

e Alt. title: ‘GRANT Packet Transmission
Timing’
e max sched prio setby
unsched cutoffs array
o More info. in slides ahead
e Same function call tree for GRANT
offset calculation
o More info. in slides ahead

homa remove from grantable (

)

Contains sstting logic

homa softirg()

homa send grants ()
Contains scheduled priority calculation logic
(and GRANT offset calculation logic)
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Calculating Unscheduled

. g .
Priorities . N
e Decided by unsched cutoffs array Scheduled 1
e Statically defined values for unscheduled message priorities
(DATA packets) 2
messages (DATA packets)
o  Control packets always sent at
highest priority level o 3 BOE. Bohexk prLo
® max_sched prio = . <= HOMA MAX MESSAGE LENGTH
HOMA MAX MESSAGE LENGTH - 1 (1,000,000) remaining bytes
Unscheduled 5 <= 15,000 remaining bytes
message priorities
(DATA packets) 6 <= 2,800 remaining bytes
Control packets always .
B S 7 <= 200 remaining bytes
sent with highest priority I

unsched cutoffs array initialization
cutoff version =1



homa_state.c

HOMA_MAX_PRIORITIES; // = 8

homa_state->num_priorities

C u tOffS I n iti a I izati O n homa_state->max_sched_prio

homa_state->unsched_cutoffs[HOMA_MAX_PRIORITIES-1]

HOMA_MAX_PRIORITIES - 5; // =3 (6 - 3 | 4 - 7)

200; // Level 7

Recelver Incomlng DATA packet homa_state->unsched_cutoffs[HOMA_MAX_PRIORITIES-2] = 2800; // Level 6
. . . homa_state->unsched_cutoffs[HOMA_MAX_PRIORITIES-3] = 15000; // Level 5
cutoff version is checked with homa_state->unsched_cutoffs[HOMA_MAX_PRIORITIES-4] = HOMA_MAX_MESSAGE_LENGTH;

homa state->cutoff version /] Level 4

homa_state->cutoff_version = 1;

Sender: Outgoing DATA packet peer.c

cutoff version is added from peer->unsched_cutoffs[HOMA_MAX_PRIORITIES-1]
peer->unsched_cutoffs[HOMA_MAX_PRIORITIES-2]

0; // Level 7
INT_MAX; // Level 6

peer->cutoff version

. . . .. peer->cutoff_version = 0; // No 'CUTOFFS packet ever received
(Every receiver will have a different priority,

so each peer structure on sender has to peer->last_update_jiffies = 0;
track its receiver data.)



Sending DATA Packets

sender.c

e |Initialized cutoff version if(DATA packet) {

= 0 will cause a mismatch if(rpc->bytes_to_be_sent_offset < rpc->unscheduled_bytes_offset) {
with receiver. which is priority = get_unscheduled_priority(rpc->total_msg_length);
e g . }
initialized with
else {
cutoff version = 1. priority = rpc->scheduled_priority;
e \Version mismatch causes t
. }
receiver to send CUTOFFS i 1
packet. priority = homa_state->total_num_of_priorities - 1;

o More info. on next slide. }



Receiving DATA Packets
e Receiver will always have latest receere
cutoff version asitis the
driver of communication and it

if(incoming_pkt_data_header->cutoff_version != homa_state->cutoff_version) {
// Implies that the sender has a stale "CUTOFFS packet.

updates priorities if(time_now != peer->last_cutoffs_packet_send_time) {
) ) e '_ /* Send updated “homa_state->unsched_cutoffs  array and
e Time (Unlt: JIferS) is checked to * “homa_state->cutoff_version™ in a 'CUTOFFS packet to peer.
not send multiple CUTOFFS K
paCketS to same sender when // Update time (jiffies) when last “CUTOFFS packet was sent.
}

packets are continuously
arriving
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Calculating rtt bytes

e Helps in keeping link utilization ~100%
e Unfortunately, currently a static config. parameter in receiver for all its peers
e Should ideally be frequently dynamically calculated per peer by receiver
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Calculating GRANT Offset

e Offset indicates permission to send bytes up to a particular bytes
e offset S total msg length

e Optimal amount of newly granted data: rtt bytes
o Helps to keep link utilization ~100%

e Example (At sender)
o Total message length = 100
o Sent data offset = 20
o GRANT offset received = 45
o = Data sent = bytes 21 to 45 (should be ~rtt bytes)



set_data_offset.c

set_data_offset(homa_state) {
counter = 0;
max_grants = 10;
total_bytes_available_to_grant = homa_state->max_incoming - homa_state->total_incoming;

if(total_bytes_available_to_grant <= 0) {
return;

while(peer in homa_state->grantable_peers) {
counter++;

first_rpc_in_peer = get_list_head(peer);

rpc_bytes_received = first_rpc_in_peer->total_msg_length -
first_rpc_in_peer->msg_bytes_remaining;

offset = rpc_bytes_received + homa_state->rtt_bytes;

if(offset > first_rpc_in_peer->total_msg_length) {
offset = first_rpc_in_peer->total_msg_length;

increment = offset - first_rpc_in_peer->total_incoming_bytes;

continued...



...continued

if (increment <= 0) {

continue;

r

if (total_bytes_available_to_grant <= 0) {
break;

}

if (increment > total_bytes_available_to_grant) {
increment = total_bytes_available_to_grant;
offset = first_rpc_in_peer->total_incoming_bytes + increment;

first_rpc_in_peer->total_incoming_bytes = offset;
total_bytes_available_to_grant = total_bytes_available_to_grant - increment;
// Assign ‘offset’ to 'GRANT packet.

if(counter == max_grants) {
break;



homa rpc free() homa rpc abort ()

GRANT Offset Calculation Timing

e Alt. title: ‘GRANT Packet Transmission
Timing’
e max sched prio setby
unsched cutoffs array
o More info. in slides ahead
e Same function call tree for Scheduled
Priority Calculation
o As already seen in slides before

homa remove from grantable (

)

Contains sstting logic

homa softirg()

homa send grants ()
Contains GRANT offset calculation logic
(and scheduled priority calculation logic)
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Calculating Unscheduled Bytes Offset

e Calculated at sender

e Example (At sender)
o Total message length = 100
o Calculated unschedules bytes offset = 20
o = Data sent = bytes 1 to 20 (should at least be ~rtt bytes)

e Rationale behind formula to decide unscheduled bytes offset not clear



set_unscheduled_byte_offset.c

set_unscheduled_byte_offset(rpc) {
mss = mtu - ip_header_length - data_header_length;

if(rpc->total_msg_length <= mss) {
rpc->unscheduled_bytes = rpc->total_msg_length;

r

else {
gso_pkt_data = pkts_per_gso * mss;
rpc->unscheduled_bytes = rpc->rtt_bytes + gso_pkt_data - 1;
extra_bytes = rpc->unscheduled_bytes % gso_pkt_data;
rpc->unscheduled_bytes = rpc->unscheduled_bytes - extra_bytes;
if (rpc->unscheduled_bytes > rpc->total_msg_length) {

rpc->unscheduled_bytes = rpc->total_msg_length;

}

}



Unscheduled Bytes Offset Calculation Timing

homa sendmsg (

)

Caller?

homa message out init ()
Contains unscheduled bytes offset
calculation logic
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Things That Did Not Work Out

e Building Homa module
o  Multiple errors that could not be debugged
o  Will have to ask Prof. Ousterhout for help
e Setting up CloudLab environment

o  Sign in successful
o Allocating exact infrastructure with Switch control tricky
o HomaModule GitHub repo does not have sufficient instructions to set up environment



https://github.com/PlatformLab/HomaModule

Tentative Future Plans

Ask Prof. Ousterhout for help
Set up CloudLab environment
Build Homa module

Conduct Homa experiments



Resources

e Homa: networking.harshkapadia.me/homa

e Code image generator: ray.so
e Array diagrams: draw.io



https://networking.harshkapadia.me/homa
https://ray.so
https://draw.io

Thank you!



