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Abstract
Homa/Linux is a Linux kernel module that implements the
Homa transport protocol. Measurements of Homa/Linux re-
confirm Homa’s superior performance compared to TCP and
DCTCP. In a cluster benchmark with 40 nodes, Homa/Linux
provided lower latency than both TCP and DCTCP for all
message sizes; for short messages, Homa’s 99th percentile tail
latency was 7–83x lower than TCP and DCTCP. The bench-
marks also show that Homa has eliminated network conges-
tion as a significant performance limitation. Both tail latency
and throughput are now limited by software overheads, par-
ticularly software congestion caused by imperfect load bal-
ancing of the protocol stack across cores. Another factor of
5–10x in performance can be achieved if software overheads
can be eliminated in the future.

1 Introduction
Montazeri et al. recently introduced a new network trans-
port protocol for datacenters called Homa [25]. Homa uses
network priority queues and receiver-driven packet schedul-
ing to favor shorter messages and eliminate congestion at host
downlinks. Homa reduces latency significantly, especially for
short messages under high network loads. Montazeri et al.
demonstrated tail latencies almost 100x better than the best
prior measurements of transport protocols that included TCP,
DCTCP [1], Infiniband, HULL [2], PIAS [4], and NDP [15].

However, the original evaluation of Homa was done in a
research setting, based partly on simulations and partly on a
user-level implementation (with kernel bypass) in the RAM-
Cloud storage system [29]. The implementation did not sup-
port general applications, and it was difficult to compare it
fairly to a kernel TCP implementation, since the user-level
implementation of Homa avoided the high software overheads
imposed on TCP by the kernel. As a result, the original Homa
work left open questions about whether the protocol’s benefits
could be achieved in a more practical setting.

This paper describes Homa/Linux, a Linux kernel mod-
ule that implements Homa. I undertook the development of
Homa/Linux with three goals: first, to understand how the
overheads of a kernel implementation affect Homa’s imple-
mentation and performance; second, to measure how a kernel
version of Homa performs compared to a mature and widely
used implementation of TCP and DCTCP; and third, to create
a practical implementation of Homa to encourage its use in
real applications and evaluate its benefits for production data-
center workloads.

This paper makes two contributions. First, Homa/Linux
demonstrates that it is possible to build a competitive produc-
tion implementation of Homa. Homa/Linux outperforms both
TCP and DCTCP by a wide margin, confirming the results in
[25]. Using four of the Montazeri workloads and consider-
ing short messages under high network loads, P99 (99th per-
centile) latency under Homa/Linux is 7–83x lower than TCP
and DCTCP. All message sizes under all workloads experi-
ence lower latency with Homa than either TCP or DCTCP,
both at the median at P99. In most cases Homa’s P99 latency
is lower than the median for TCP and DCTCP. Homa needs
only a few priority levels to achieve high performance, and
it outperforms TCP and DCTCP even with only one priority
level.

Second, this work provides a case study of the challenges in
building a performant transport protocol in the high-overhead
environment of the Linux kernel. Homa/Linux had to address
a variety of issues, such as batching, load balancing, and real-
time processing. Homa eliminates almost all network conges-
tion, but software congestion is becoming more problematic
as more and more cores must be harnessed to keep up with in-
creasing network speeds. In Homa/Linux, software overheads
are now the primary factor limiting performance. This paper
quantifies those overheads. For example, at least 18 cores will
be required to drive a 100 Gbps network in both directions,
and distributing protocol processing across multiple cores in-
creases software overheads by 2–3x.

Although Homa/Linux provides much better performance
than TCP, its latency and small-message throughput are still
5–10x worse than raw network speeds. Section 7 argues that
this gap cannot be reduced significantly as long as transports
are implemented in software. To harness future networks’ full
performance potential, protocols such as Homa will probably
need to be implemented in hardware. This will require new
NIC architectures to be developed.

2 Homa Summary
This section summarizes the key elements of the Homa proto-
col; see Montazeri et al. [25] for details and discussion. Homa
is designed as a transport for RPC frameworks in datacenters.
It is optimized for networks with one-way hardware latencies
as low as 1–2 µs and aims to provide the lowest possible tail
latency for short messages, even when operating at high net-
work load with a mix of message lengths. It does so by min-
imizing the latency impact of congestion at the network edge
(host downlinks). Homa also eliminates head-of-line block-
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ing that occurs when small messages are delayed behind large
ones in TCP streams. Homa does not explicitly deal with con-
gestion in the network core (see Section 8).
SRPT and messages. Homa implements an approximation
of SRPT (shortest remaining processing time), prioritizing
shorter messages over longer ones. SRPT is most benefi-
cial for short messages, but it also improves latency for large
messages compared to the fair sharing approach used in pro-
tocols such as TCP. This is because SRPT produces run-to-
completion behavior: once a message becomes highest prior-
ity, it will remain highest priority until it completes (unless
new messages arrive).
Receiver-driven packet scheduling. In Homa, each receiver
collects information about all of its incoming messages and
schedules incoming packet transmissions. The first few pack-
ets of each message (unscheduled packets) are transmitted
unilaterally by the sender, but the remaining scheduled pack-
ets are sent only in response to grants from the receiver. The
number of unscheduled packets is typically chosen to cover
the round-trip time, so that an unloaded server can return the
first grant before the last unscheduled packet has been sent.
This allows messages to use the full network bandwidth in an
unloaded system. The grant mechanism allows receivers to
limit congestion at their downlinks; buffer buildup occurs only
if many senders transmit unscheduled packets simultaneously
to the same destination (incast). I use the term RTTbytes to de-
scribe the number of unscheduled bytes, following Montazeri
et al.; its role is analogous to windows in other protocols.
In-network priority queues. Homa takes advantage of the
priority queues in modern network switches (typically 8 or 16
for each egress port). It divides the priority levels into two
groups: the highest levels are used for unscheduled packets,
and the lower levels for scheduled ones. Within each group,
shorter messages get higher priorities. Receivers choose the
priorities for all of their incoming traffic. For scheduled pack-
ets, the receiver specifies priorities “just in time” using grants.
For unscheduled packets, the receiver specifies in advance the
range of message lengths for each priority level; it dissemi-
nates new assignments occasionally as its workload changes.

The fraction of priority levels allocated for unscheduled
packets is chosen to match the fraction of all incoming bytes
that are in unscheduled packets. The cutoffs between un-
scheduled priorities are assigned so that each priority level is
used for about the same number of incoming bytes.
Sender-side SRPT. Homa nodes also implement SRPT when
transmitting: given multiple messages with packets to trans-
mit, a sender should transmit packets for the message with
the fewest remaining bytes. To do this, Homa must limit the
rate at which outgoing packets are passed to the NIC to en-
sure that long queues do not build up in the NIC (these would
delay packets from new shorter messages).
Overcommitment. When a receiver issues a grant there is
no guarantee that the sender will immediately transmit the
granted packets. In order to keep its downlink fully loaded,

receivers thus grant simultaneously to multiple incoming mes-
sages; this is called overcommitment since it overcommits the
downlink and may result in buffering at the switch. Scheduled
priority levels are allocated to ensure SRPT among the mes-
sages being granted, so overcommitment does not affect the
latency of the highest priority message. The degree of over-
commitment is typically in the range of 5–10, which is chosen
as a balance between excessive buffer buildup (if too large)
and inefficient use of downlink bandwidth (if too small).

3 Homa/Linux API
TCP’s connection-oriented socket API is a poor match for
Homa, and for datacenter applications in general. The first
problem is TCP’s streaming nature, which means that it has
no notion of message boundaries. This is problematic for
Homa, which needs message lengths to implement SRPT.
Streams are also awkward for most datacenter applications,
which communicate via messages. These applications must
impose their own message structure on TCP streams; this adds
nontrivial complexity, given that a read might return only part
of a message, or parts of several messages. It is difficult to
share a TCP stream between multiple reading threads (e.g.,
in a server), since reads don’t necessarily return dispatchable
units (entire messages).

Streams also have the disadvantage of enforcing FIFO or-
dering on their messages. As a result, long messages can
severely delay short ones that follow them. This head-of-line
blocking is one of the primary sources of tail latency measured
for TCP in Section 5.

A second problem with TCP sockets is that they are con-
nection oriented, with long-lived state for each peer that an ap-
plication communicates with. Connections are undesirable in
datacenters because applications can have hundreds or thou-
sands of them, resulting in high space and time overheads.
Some applications have resorted to proxies or other forms of
connection pooling [32] to reduce the overheads. It seems to
be an article of faith in the networking community that con-
nections are necessary for desirable properties such as reliable
delivery and congestion control, but in fact all of these prop-
erties can be achieved without connections.

Because of these issues, Homa/Linux provides a message-
based API. Specifically, it implements remote procedure calls
(RPCs). Each RPC consists of a request message sent from a
client to a server, followed by a corresponding response mes-
sage in return. An RPC protocol has two advantages over a
pure messaging approach. First, the response serves as ac-
knowledgment for the request, reducing the number of pack-
ets that must be processed. Second, it results in a deeper in-
terface [28] because the transport can implement the timers
and retries needed to ensure end-to-end completion. In a pure
messaging protocol, timeouts must be implemented by appli-
cations (the protocol can ensure that individual messages are
delivered, but cannot ensure that servers generate responses).

Homa/Linux has no notion of connections, only RPCs. A
client can use a single socket for simultaneous communication
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int socket(AF_INET, SOCK_DGRAM, IPPROTO_HOMA);

int bind(int sockfd, const struct sockaddr *addr,

socklen_t addrlen);

int close(int sockfd);

int homa_send(int sockfd, const void *request,

size_t reqlen,

const struct sockaddr *dest_addr,

socklen_t addrlen, uint64_t *id);

int homa_recv(int sockfd, void *buf, size_t len,

int flags, struct sockaddr *src_addr,

socklen_t addrlen, uint64_t *id);

int homa_reply(int sockfd, const void *response,

size_t resplen,

const struct sockaddr *dest_addr,

socklen_t addrlen, uint64_t id);

Figure 1: The API provided by Homa for applications; socket, bind,
and close are existing Linux system calls.

with any number of servers. A server can use a single socket to
receive requests from any number of clients, to reply to client
requests, and to issue its own requests as a client. Homa/Linux
maintains state only for active RPCs (rarely more than a few
at a time). This eliminates the overheads associated with con-
nections.

Each Homa RPC is independent. Any number of RPCs may
be active simultaneously for a given socket. If a client issues
multiple concurrent RPCs, they may complete in any order;
this eliminates the TCP’s head-of-line blocking problem. If
order matters among concurrent RPCs, Homa clients can add
their own sequence numbers to messages.

Figure 1 shows Homa/Linux’s system call interface. The
existing socket and close calls are used to create and delete
Homa sockets; Homa/Linux defines a new protocol type
IPPROTO HOMA. If a socket is going to receive incoming re-
quests, the existing bind call is used to associate the socket
with a well-known port number. There is no need to invoke
bind for client sockets; Homa/Linux automatically assigns
port numbers for them from the upper half of the 16-bit port
space.

Homa/Linux defines three new functions: homa send,
homa recv, and homa reply. All are implemented via
ioctls on the Homa socket; Homa/Linux does not add new
system calls to Linux. A client invokes homa send to issue
a request; it returns a 64-bit unique identifier for the RPC,
which can be used to wait for the corresponding response.
homa recv receives incoming messages; it returns a message
and its unique identifier. The arguments to homa recv can
restrict it to return only requests, only responses, or only a re-
sponse with a given identifier. homa reply is used by servers
to send responses; it is similar to homa send except that the
RPC identifier is an input argument.

The Homa/Linux API is not backwards-compatible with
existing applications based on TCP or UDP sockets, due to
the API’s need for explicit RPC ids. However, most datacen-
ter applications are layered on a few RPC frameworks such
as gRPC [12] or Apache Thrift [34]; adding Homa support to
them should enable transparent usage by many applications.

Homa/Linux ensures reliable delivery of messages and

eventual completion of each RPC issued by a client. An RPC
fails only if the server becomes nonresponsive or there is no
socket matching the port in the request. There is no limit on
the processing time for an RPC.

4 Implementation
Homa/Linux is a dynamically loadable Linux kernel mod-
ule; it does not require any changes to Linux itself. The
current version runs on Linux version 5.4.80 and contains
about 10,000 lines of heavily commented C code. Source
for Homa/Linux is freely available on GitHub along with unit
tests, instrumentation tools, and all of the benchmarks dis-
cussed in this paper [16]. The module was implemented with
the goal of achieving production quality, and I believe the cur-
rent version is mature enough to run a variety of applications.

Most of the implementation effort for Homa/Linux focused
on three obstacles to high performance. The first is the high
cost of pushing a packet through the protocol stack. This cost
is particularly high in Linux, due to its many layers and fea-
tures. To amortize the protocol stack overheads, packets must
be collected into batches, so that the stack traversal cost is
only incurred once per batch. Unfortunately, batching nec-
essarily incurs latency, since the first packet in a batch must
be delayed until the last is available. Larger batches can be
processed more efficiently, but incur a larger latency penalty.

The second obstacle is that a single core is too slow to han-
dle all the protocol processing for a modern high-speed net-
work, especially for small packets. This problem is worsening
over time, since network speeds are increasing rapidly while
CPU speeds are not. A transport protocol must be able to bal-
ance its load across a large number of cores. Even so, small-
packet performance will be severely limited by software over-
heads; for example, neither Homa nor TCP can utilize more
than about one-third of the bandwidth of a 25 Gbps network
for short-message workloads, even with 20 cores. The great-
est challenge with load balancing is software congestion in the
form of hot spots that form when too much work is assigned
to one core; even after considerable optimization, hot spots re-
main the single greatest source of tail latency for Homa/Linux.

The third obstacle to high performance is real-time process-
ing. In the case of Homa, real-time processing is needed to
implement a transmit rate limiter as discussed in Section 4.3.
Implementing such a mechanism, which requires response
times on the order of a few microseconds, is challenging in
the Linux kernel and creates additional software overheads.

These problems are likely to occur in any transport proto-
col, and Linux contains mechanisms to facilitate both batch-
ing and load-balancing. However, the Linux mechanisms are
biased towards TCP, even when implemented in code that is
ostensibly protocol independent. To implement Homa effi-
ciently, it was necessary to reshape Homa/Linux to fit the ex-
isting mechanisms. In some cases, Homa/Linux subverts the
mechanisms to achieve results that are not possible with TCP.

One recurring issue is that TCP depends on in-order pro-
cessing of a stream’s packets. This requires flow-consistent
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Figure 2: Structure of Homa/Linux. Homa components are shown in
blue; existing Linux kernel modules are in yellow. Gray areas repre-
sent different cores. Only the primary sending and receiving paths are
shown; other Homa elements such as the pacer thread and timer thread
also transmit packets.

routing in the network, and also requires consistency in pro-
tocol processing on the hosts: for example, to preserve packet
order, each packet of a flow must pass through the same set of
cores. Homa does not require packets to be processed in or-
der; by relaxing this constraint it can achieve better batching
and load balancing. As a result, Homa/Linux attempts to by-
pass TCP’s constraints; this is not always easy or clean, since
the constraints tend to be enforced by Linux.

The rest of the section discusses these three primary issues
in detail, plus a few other smaller issues. The design described
here evolved over about two years and was driven by exten-
sive performance measurements. For example, throughput for
Homa/Linux improved by about 3x over this process (the ini-
tial version did not implement batching). Space limitations
prevent inclusion of the detailed measurements.

4.1 Packet flow and batching
Figure 2 shows the major components of Homa and the basic
packet flow for sending and receiving messages. Homa exists
as a layer just above IP in the Linux networking stack, parallel
to TCP and UDP; the packet flow discussed in this section is
similar to that for TCP and UDP. Homa packets are encapsu-
lated as IPv4 datagrams.

The basic path for packet transmission is shown in the top
part of Figure 2. When an application invokes homa send or
homa reply, the resulting ioctl kernel call is dispatched to
Homa/Linux. Homa/Linux copies the message data from user
space into packet buffers and passes the first few packets to
the IP stack, which eventually calls a device driver to transmit
the packets.

Linux offers two mechanisms for batching on the transmit
path: TSO (TCP Segmentation Offload) and GSO (Generic
Segmentation Offload). In either case, the transport protocol
creates a single large packet (up to 64 KB) for stack traversal.
Once the packet reaches the device driver it is broken up into
smaller segments for transmission. With TSO the segmenta-
tion occurs in the NIC. For NICs that don’t support TSO, or
for protocols that cannot use TSO, GSO can perform segmen-
tation in software, just above the driver layer. Homa/Linux
currently supports TSO but not GSO. TSO assumes that pack-
ets have TCP headers, so Homa packet headers mimic the

TCP fields that TSO depends on. Unfortunately, TSO and
GSO enable batching only for data packets that are part of the
same message. For short messages and control packets, each
transmitted packet must traverse the protocol stack indepen-
dently.

The receive path is shown at the bottom of Figure 2. When
an interrupt occurs, the interrupt handler doesn’t actually read
packets; instead, it schedules an NAPI action to execute driver
code. NAPI actions execute at interrupt level on the same core
that received the interrupt, just before returning from the inter-
rupt and with interrupts reenabled. To avoid high overheads
associated with interrupts, the NAPI layer polls the NIC for
more packets until it reaches either a packet count limit or a
time limit.

Once the NAPI layer has finished collecting packets, it
passes them to the SoftIRQ layer, where they work their way
through the networking and IP layers, eventually reaching
Homa. Homa performs protocol processing and message re-
assembly. When a message is complete, Homa signals the
waiting application thread (or queues the message if there are
no waiting threads); the application thread copies the message
data to user space and then returns from the homa recv sys-
tem call. SoftIRQ code executes in the same fashion as NAPI
(at interrupt level with interrupts enabled) but it may run on a
different core than the NAPI code (see Section 4.2).

Before forwarding incoming packets to SoftIRQ, the NAPI
layer organizes them into batches. It does this by passing
each packet to a transport-specific function using a mecha-
nism called GRO (Generic Receive Offload). The transport-
specific GRO function decides how to group packets into
batches. For TCP, each batch contains packets from a sin-
gle flow (this ensures that all packets from a flow go to the
same core for SoftIRQ). Unfortunately, protocol-independent
GRO code partially segregates batches by flow before invok-
ing the transport-specific function. This segregation is neither
necessary nor desirable for Homa. Fortunately, I found a way
for Homa/Linux to defeat the GRO segregation and collect all
incoming packets into a single batch (see the Appendix for
details). This allows Homa to batch more aggressively than
TCP, and is one of the reasons Homa has higher throughput
for short messages (in TCP, each short message becomes a
separate batch).

4.2 Load balancing
As mentioned in the introduction to this section, the network-
ing subsystem must distribute load across multiple cores to
keep up with a high-speed network. Load balancing is easy
for packet output, because the output stack executes entirely
on the sending thread’s core, with a separate NIC channel per
core. The Linux scheduler balances threads across cores, and
this distributes the packet transmission load as well.

The remainder of this section focuses on packet input,
where Linux employs two different load balancers. The first
is RSS, which runs in NICs and distributes incoming pack-
ets across cores for NAPI processing using a hash of packet
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header fields. This hash function ensures that all packets from
a given flow are assigned to the same core, as required by
TCP. The second load balancer runs in the NAPI layer: after
incoming packets have been grouped into batches, the NAPI
layer chooses a SoftIRQ core for each batch. It does this us-
ing another hash function on header fields of the first packet in
each batch; the hash is different from the one used by the NIC,
but it ensures that all batches for a given flow are delegated to
the same SoftIRQ core.

Input load balancing is problematic because it results in hot
spots. Hot spots occur because the Linux scheduler’s load bal-
ancer is unaware of the networking subsystem. For example,
the NAPI layer can consume a core for hundreds of microsec-
onds when a burst of packets arrives for a single long message.
Short messages can still be processed through the NAPI and
SoftIRQ layers on other cores, but if a message’s target thread
is assigned to the core processing the local burst, it will not
run until after the burst is handled. This form of hot spot is
the primary contributor to P99 tail latency in Homa/Linux.

Homa exacerbates this form of hot spot because it tries to
use the entire incoming link bandwidth for one message at a
time. TCP’s fair-sharing scheduler tends to divide incoming
bandwidth among multiple flows, which will probably be pro-
cessed on different cores, so this form of hot spot is less likely
to occur. Increasing packet size does not help, because NAPI
polls for more packets: if the MTU increases then NAPI will
spend less time processing packets but more time polling.

Homa/Linux has been unable to eliminate NAPI-thread
conflicts because it has no control over the RSS hash function
in the NICs. Hot spots can also occur with the SoftIRQ layer,
where it conflicts with either application threads or NAPI. I
eliminated most of these hot spots by repurposing an alternate
mechanism for SoftIRQ core selection (the socket flow table,
which steers packets to a specific application thread’s core)
so that Homa’s GRO function can select a specific SoftIRQ
core for each packet batch. After experimenting with sev-
eral policies, I settled on one that records for each core the
most recent time when it processed a Homa packet at either
NAPI or SoftIRQ level. To choose a SoftIRQ core, NAPI
consults the times for the next few cores after the one where
it is running (in circular order) and selects the one with the
oldest time. This policy has two desirable properties. First, it
avoids conflicts between NAPI and SoftIRQ. Second, it tends
to distribute SoftIRQ batches across multiple cores, so that
no single core is occupied continuously: this leaves time for
application threads to execute on each core. This policy im-
proved Homa’s P99 latency by about a factor of 2x.

I experimented with using core affinity to reduce conflicts
between application threads and NAPI/SoftIRQ threads. For
example, I tried partitioning the cores, with one set used ex-
clusively for application threads and the others for NAPI and
SoftIRQ processing. However, I was unable to find a configu-
ration where core affinity improved tail latency.

A second problem with load balancing is that it hurts per-
formance at low load. At low load it is best to concentrate

all processing on a single core: ideally, RSS should be dis-
abled so that all interrupts pass through a single core, and that
same core should execute both the NAPI and SoftIRQ lay-
ers. This maximizes cache locality, eliminates inter-core syn-
chronization, eliminates the overhead of cross-core invocation
between the NAPI and SoftIRQ layers, and makes the NAPI
polling mechanism more efficient. In contrast, load balancing
employs many cores but at low load they are all underutilized.
These cores are likely to enter power-saving C-states, result-
ing in wakeup delays of 50–100 µs the next time work is as-
signed to them. Furthermore, the continual arrival of packets
on all cores reduces the effectiveness of power-saving mecha-
nisms.

Ideally, the load balancing configuration should change dy-
namically with load, but there does not appear to be a way
to do this in Linux. Thus, Homa/Linux is optimized for high
loads. As a result, P99 latency for short messages is actually
worse at low load than high load (see Section 5.4). However,
Homa/Linux includes one optimization for low load. The al-
gorithm for choosing a SoftIRQ core checks to see if the cur-
rent batch contains only a single packet (an indicator of low
load). If so, the NAPI core is also used for SoftIRQ. This
reduces round-trip latency by 3–4 µs when the system is un-
derloaded.
4.3 Real-time processing: the pacer
As discussed in Section 2, Homa/Linux must limit the length
of the NIC’s internal transmit queue to enforce SRPT during
output: if a large queue builds up in the NIC, then it will de-
lay small messages. When the NIC queue length exceeds a
threshold, Homa/Linux no longer transmits packets immedi-
ately; their messages are added to a queue and a pacer thread
is awakened. The pacer thread manages the queue, passing
packets to the NIC in SRPT order as NIC queue length per-
mits.

The NIC queue length is not directly observable, so
Homa/Linux maintains nic empty time, an estimate of the
time when all queued packets will have been transmitted.
As each transmitted packet is passed to the IP stack, this
variable is updated based on the packet length and link
speed. A system parameter controls how far into the future
nic empty time is allowed to get; the current value is 2 µs.

The pacer operates under severe real-time constraints: to
keep the NIC queue short while fully utilizing the uplink, it
must queue new packets at a time granularity of 1–2 µs. There
is no sleep/wakeup mechanism in Linux that can operate at
this timescale, so the pacer thread must poll the processor cy-
cle counter to wait for the next transmission time. As a result,
the pacer consumes most of a core under heavy output load.

Even with a dedicated core, the pacer can fall behind. In
the original design, once the pacer queue became nonempty,
all output packets passed through the pacer. Unfortunately, a
single thread cannot push small packets through the IP stack
fast enough to drive the network at full speed. In addition, the
scheduler occasionally deschedules the pacer; this can pro-
duce gaps of several milliseconds with no packets transmitted.
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Homa/Linux includes three additional mechanisms to en-
sure full usage of the uplink. First, packets smaller than a
threshold (currently 1000 bytes) bypass the pacer mechanism:
they are passed to the NIC immediately without consulting or
updating nic empty time (short packets transmit so quickly
that it isn’t possible to queue them faster than the NIC sends
them, so the pacer is superfluous). Second, other cores help
push packets through the network stack when the pacer falls
behind. Before queuing a message for the pacer, Homa/Linux
checks nic empty time; if it has dropped below the thresh-
old for sending more packets, it indicates that the pacer isn’t
keeping the uplink fully utilized, so packets are transmitted di-
rectly, even if the pacer queue is occupied. Third, the pacer is
invoked explicitly by the SoftIRQ layer after processing each
batch of Homa packets; if the pacer thread has fallen behind,
this invocation will queue more packets (but it returns without
polling).

4.4 Grants
The goal of the grant mechanism is to maintain RTTbytes
of outstanding grants (data granted but not yet received) for
each active message. The number of active messages is lim-
ited by the degree of overcommitment; only the highest pri-
ority messages (according to SRPT) are active. In addition,
Homa/Linux will not grant to more than one message from a
given peer at a time, since the peer will only transmit the short-
est one. To implement this, Homa/Linux maintains a global
2-level priority queue of incoming messages, consisting of a
list of messages from each peer, plus a list of all peers with
non-empty lists. Each is sorted in increasing order of the num-
ber of bytes not yet granted; the active messages consist of the
first message from each of the first few peer lists.

Sending grants is not triggered by a clock, but rather by
packet arrivals: after the SoftIRQ layer processes each batch
of incoming packets, it checks to see if any active messages
need additional grants. Packet arrivals may also change the
structure of the grant queues (a new message may appear or
an existing message may become fully granted).

The original design of Homa called for one grant packet to
be sent for each scheduled data packet. However, this ap-
proach results in high overheads. Furthermore, the use of
TSO means that packets are transmitted in groups, so there
is no benefit in sending grants at per-packet granularity. Thus,
Homa/Linux provides a parameter that specifies a minimum
increment for grants; it is currently set to 10000 bytes, which
is the same as the size of Homa’s TSO packets.

4.5 Other implementation issues

Locking. The Linux networking stack is designed around per-
socket locks. This approach works well for TCP because each
flow is associated with its own socket; thus different flows can
be processed concurrently without lock conflicts. However, a
Homa application typically only has one socket, which is used
for all messages. Homa initially used socket-level locking, but
this resulted in severe contention for socket locks.

Homa was eventually refactored to use RPC-level locks as
the primary synchronization mechanism. However, per-RPC
locks created additional complications. For example, when
the first packet arrives for an RPC, an entry must be created in
a hash table of RPCs associated with the socket; future pack-
ets must use the existing RPC structure. However, multiple
“first” packets for an RPC might be processed concurrently on
different cores; the natural way to synchronize them is to use
the socket’s lock. To process packets without acquiring the
socket lock, Homa/Linux associates a lock with each bucket
in the socket’s hash table; this lock covers all RPCs in that
bucket. Bucket locks synchronize the lookup of an existing
RPC with the creation of a new one, while allowing RPCs in
other buckets to be processed concurrently.

Another issue with locking is the potential for deadlock.
There are several places in Homa/Linux where multiple locks
must be held. RPC locks are normally acquired before any
others, but there are a few places where an RPC lock needs
to be acquired while holding a different lock; this risks dead-
lock. Code had to be reorganized on a case-by-case basis to
prevent deadlock. For example, in some situations the RPC
lock can be acquired conditionally; if it is not available, then
the operation can be deferred until later.

Combining FIFO with SRPT. Homa’s SRPT priority mech-
anism is ideal for reducing small-message tail latency, and it
also works well for most large messages because of its run-
to-completion nature. However, under high load, a few of the
largest messages may suffer very high tail latency. To miti-
gate this problem, Homa/Linux directs a small configurable
fraction of the total network bandwidth to the oldest message
instead of using SRPT; this occurs both when issuing grants
for incoming messages and in the pacer for outgoing mes-
sages. The current fraction is 5%, which eliminates most of
the penalty for the largest messages without affecting tail la-
tency for short messages. This improves tail latency for the
largest messages by about 2x in pathological cases.

Reaping RPCs. Any long-running operation creates a threat
to tail latency because it may delay other work. One example
is RPC reaping, which frees the resources for an RPC after
it completes. For clients, this is just before returning from
homa recv; for servers, it is after the response has been sent.
Reaping can take tens of microseconds for large RPCs, most
of which is spent freeing packet buffers. Reaping was origi-
nally done immediately when RPCs were freed, but it had a
noticeable impact on tail latency. On servers, for example,
reaping could occur in the SoftIRQ layer while handling an
incoming packet, causing unpredictable delays for subsequent
packets.

To reduce the impact of reaping on tail latency,
Homa/Linux now defers reaping so that it does not occur
when an RPC is freed. Instead, reaping occurs in homa recv

while waiting for incoming messages: large messages are
reaped incrementally in chunks of a few packet buffers, check-
ing for incoming messages after each chunk. This approach
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hides the cost of reaping unless the system is so loaded that
homa recv never waits. If the pool of unreaped messages
grows too large, then homa recv will stop and reap despite
the waiting messages; this situation is rare in practice.
Receive polling. If a thread blocks in homa recv, it takes
about 2.5 µs to wake it on message arrival; this contributes
significantly to latency. To avoid this cost, Homa polls briefly
in homa recv before blocking the thread. This saves about 2
µs if a message arrives during the polling interval. The inter-
val is a system parameter, currently 50 µs. Polling is useful
primarily when the system is lightly loaded; it has little impact
on the tail latency measurements in Section 5.
Timer thread. Homa contains a dedicated in-kernel thread
that wakes up at 1 ms intervals, checks for overdue packets,
requests retransmissions, and eventually declares a peer dead
if it fails to respond. Lost packets are rare, so slow response
is usually due to overload on the peer; to minimize the extra
load from retransmission requests, the timer thread will only
request retransmission for a single RPC at a time for each peer
(the oldest one). If a peer is declared dead, then all RPCs
to/from that peer are aborted.
Computing unscheduled priorities. Each Homa host must
send information to its peers about the priorities to use for
unscheduled packets. Priorities are computed by a user-level
daemon, homa prio, which runs regularly (currently every
500 ms) and collects information from Homa/Linux about
the size distribution for recently received messages. It then
decides how many priorities to use for unscheduled pack-
ets and computes cutoff values (the largest message size for
each priority level) as described in Section 2. If the cut-
offs have changed significantly, homa prio passes them to
Homa/Linux using the sysctl mechanism. Homa/Linux
does not immediately notify all its peers; it waits until the
next message from each peer, and then sends the new cutoffs.
Long-term state. As mentioned previously, Homa stores no
long-term connection information. It does, however, keep
long-term state for each peer that it has communicated with.
A peer’s state is about 200 bytes, of which almost half con-
sists of cached routing information. The remainder includes
information about unscheduled priorities for that peer and in-
formation for detecting timeouts and managing grants. This
is far less than the 2000 bytes that TCP stores for each open
socket. Peer state is created on demand and never discarded.
Configuration parameters. One disadvantage of
Homa/Linux is that it has about 30 configuration pa-
rameters. Many were added solely for evaluating the
implementation and need not be considered in practice. For
many others the exact value has little impact on system
performance. About 5–10 parameters can have a significant
impact on performance; for them the best value depends on
hardware characteristics such as network speed, CPU speed,
and number of cores. I believe that it is possible to compute
their values automatically by running benchmarks, but I
leave this to future work. The only configuration parameter

CPU: E5-2640v4 (10 cores, 2.4 GHz)
RAM: 4x 16 GB DDR4-2400 DIMMs
Disk: Intel DC S3520 SSD (480 GB 6G SATA)
NIC: Mellanox ConnectX–4 25 Gbps
Switch: Mellanox 2410

Table 1: CloudLab [10] xl170 hardware configuration used for bench-
marking. All nodes ran Linux 5.4.80. Hyperthreads were enabled (2
hyperthreads per core). TSO and RSS were enabled for all protocols,
with separate transmit/receive channels for each hyperthread. C-States
were enabled, Meltdown mitigations were disabled, and interrupt mod-
eration was disabled. All 40 nodes were connected to a single switch.

Homa TCP DCTCP
100B latency (µs) 15.1 23.4 24.1
500KB throughput (Gbps) 10.0 20.3 20.5
Client throughput (Gbps) 23.8 23.9 21.4
Server throughput (Gbps) 23.7 23.6 22.4
Client RPC rate (Mops/sec) 1.6 1.0 1.0
Server RPC rate (Mops/sec) 1.6 1.0 1.0

Table 2: Basic Homa and TCP performance. The top two lines used
a single client thread issuing back-to-back requests to a single server.
Latency was measured end-to-end at application level with 100-byte re-
quests and responses; throughput was measured with 500 KB requests
and responses. For the remaining measurements each client had multi-
ple threads; each thread issued multiple concurrent RPCs. Client perfor-
mance was measured with a single client node spreading requests across
9 server nodes; server performance was measured with 9 client nodes all
issuing requests to a single server node. Throughput was measured with
500 KB requests and responses and counts only message payloads; RPC
rate was measured with 100-byte requests and responses. Each number
represents the best average across five 5-second runs.

for which the best value might vary from application to
application is the polling interval; this should probably be
made an argument of the homa recv kernel call.

5 Performance Evaluation
This section evaluates Homa/Linux’s performance, compar-
ing it with the Linux implementations of TCP and DCTCP.
The most important metric is tail latency for short messages
under high load, but the benchmarks also measure perfor-
mance for large messages and lower loads. This section
also evaluates concerns that have been raised in recent papers
about Homa’s use of priorities and network buffers.

The benchmarks ran on a 40-node cluster described in Ta-
ble 1. Each server had 10 cores with two-way hyperthreading
enabled. Unless otherwise indicated below, the term “core”
refers to a single hyperthread. Unless otherwise stated, all
measurements used a maximum packet size (MTU) of 3000
bytes, which produced better results for all protocols than the
traditional 1500 bytes. For DCTCP the ECN marking thresh-
old was 70 KB.

5.1 Basic latency and throughput
Table 2 shows latency and throughput for Homa/Linux and
TCP under best-case conditions. Homa/Linux round-trip-
times for short messages are about one-third lower than those
of TCP or DCTCP (15.1 µs vs. 23.4/24.1 µs). This differ-
ence is primarily due to Homa’s use of polling (4 µs) and
its optimization of SoftIRQ core selection (3–4 µs). In ad-
dition, Homa’s single-socket-per-thread approach eliminated
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Name Mean Description
W2 433 Search application at Google [33].
W3 2423 Aggregated workload from all applications

running in a Google datacenter [33].
W4 60175 Hadoop cluster at Facebook [32].
W5 385315 Web search workload used for DCTCP [1].

Table 3: The message size distributions used for benchmarks. The
workloads were taken from [25], except that messsages larger than 1
MB in W4 and W5 were truncated to 1 MB (the largest size permitted
under Homa/Linux). The workloads are ordered by average message
size (“Mean”): W2 is most skewed towards small messages and W5 is
most heavy-tailed.

the need for epoll system calls, which saves 1 µs. Sec-
tion 6 shows that latencies in real applications are consid-
erably higher than this for both Homa/Linux and TCP. For
comparison, the lowest achievable round-trip latency for this
hardware (using kernel bypass) is 3.7 µs [19].

Homa’s throughput is only about half that of TCP or
DCTCP when a single client sends large RPCs back-to-back
to an unloaded server (10 Gbps vs. 20 Gbps). This is be-
cause Homa’s message-based interface reduces opportunities
for pipelining. In particular, Homa/Linux cannot transfer any
part of a message to a waiting application until the entire mes-
sage has arrived, whereas TCP can overlap network trans-
mission and copying to user space. When multiple RPCs
are active simultaneously, Homa’s throughput is equivalent to
TCP’s, while DCTCP’s throughput is slightly lower.

Table 2 also shows the maximum small message request
rate. Homa’s throughput is 60% above TCP or DCTCP. One
reason is Homa’s ability to batch received packets more effec-
tively than TCP, as described in Section 4.1. Homa generated
average batches of 2–3 packets at the NAPI level, whereas
TCP did not batch packets at all for this benchmark.

5.2 Cluster benchmarks
Most of the remaining evaluation is based on a cluster bench-
mark that uses all 40 nodes. Each node operates simultane-
ously as both client and server, with multiple client and server
threads chosen for each protocol to maximize its performance.
Each node has multiple independent Homa server sockets or
TCP listen sockets. Clients send request messages to servers
chosen at random, and servers return response messages of
the same size as the requests. Message sizes are chosen at
random to match one of four workload distributions, W2–W5,
described in Table 3. These distributions are the same as those
used in Montazeri et al. except that W1 is omitted because of
space limitations (W1’s behavior is almost identical to W2).
The timing of new requests is based on a Poisson arrival func-
tion that produces a particular average throughput.

Figure 3 compares Homa with TCP and DCTCP for each
of the four workloads under high network loads. The figure
uses slowdown as a measure of latency, which allows com-
parisons between messages with different lengths. The slow-
down for a given RPC consists of the end-to-end round-trip
time (RTT) observed by the client application divided by the
RTT for RPCs of the same length measured with Homa under
the ideal conditions of Table 2; smaller slowdowns are better.
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Figure 3: Median and 99th-percentile slowdown as a function of mes-
sage size for workloads W2-W5. Each x-axis is linear in number of
RPCs (i.e. it reflects the CDF of message length for that workload). The
network load for each workload (e.g. 20 Gbps for W4 and W5) was
chosen so that the protocols operated at 80–90% of their maximum sus-
tainable rates; load is measured in units of message payload bytes sent
by each host (an equal amount was also received).
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Table 2.

Homa’s latencies are significantly lower than both TCP and
DCTCP. For example, Homa’s P99 latencies for short mes-
sages are 19–72x lower than those for TCP and 7–83x lower
than DCTCP. Homa’s P50 latencies for short messages are
3.5–7.5x lower than TCP and 2.7–3.8x lower than DCTCP.
Homa’s P99 slowdown is actually lower than P50 slowdown
for TCP and DCTCP, except for the the largest messages in
W4 and W5. DCTCP generally outperforms TCP, as ex-
pected.

W2 is different from the other workloads in that network
congestion is not an issue: almost all messages are short, so
none of the protocols can support more than about 40% net-
work utilization. For this workload performance is limited
primarily by software overheads; Homa still provides much
lower latency than either TCP or DCTCP. An analysis of
TCP’s P99 behavior showed that it is caused by scheduler
anomalies where two threads end up assigned to the same
core, even though there are fewer application threads than
cores. One of them eventually migrates to a different core,
but by the time it resumes execution, many milliseconds have
been lost. Anomalies like this did not occur for Homa.

One potential concern with Homa’s SRPT policy is its im-
pact on large messages. Figure 3 shows that this is not a prob-
lem in practice. Slowdowns for workloads W4 and W5 do in-
crease for large message sizes, but Homa still beats both TCP
and DTCP on P50 and P99 latency. There is no message size
in any workload where TCP or DCTCP outperformed Homa.

Figure 4 shows more detail on the round-trip latency for
short messages in W4. Homa’s latencies are better than TCP
and DCTCP at every percentile, typically by at least an order
of magnitude.

Homa’s slowdown in Figure 4 is entirely due to software
overheads: Homa has eliminated network congestion as a sig-
nificant factor. To verify this, I used a timetracing package to
extract precise end-to-end traces of short RPCs with latencies
near the 99th percentile. Latency for these RPCs was primar-
ily due to hot spots in load balancing: an application thread
cannot execute to handle a short message because its core is
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Figure 5: The impact of the number of available priority levels on
Homa’s P99 slowdown for workload W5 (other workloads are omitted
because of space limitations; they are less sensitive to the number of pri-
orities than W5). TCP and DCTCP are shown for comparison.

occupied by NAPI processing for unrelated large messages.
These NAPI bursts can last 100 µs or more.

In contrast, timetraces for TCP RPCs near P99 showed dif-
ferent causes of tail latency. Roughly two-thirds of the traces
had head-of-line blocking where a short message was stuck
behind a long one in the same stream. In the remaining traces
the extra time occurred after a packet was accepted by the
source NIC and before an interrupt occurred on the destina-
tion, suggesting buffer buildup in the NIC or at the switch’s
egress port. This analysis shows that the P99 latency differ-
ence between TCP/DCTCP and Homa is because of protocol
features, as opposed to quality of the implementations.

5.3 Number of priorities
One of the concerns that has been raised about Homa is its use
of switch priorities (e.g., [21]): priority queues are a limited
resource, and in some datacenters they are already allocated
to applications with critical QoS needs. Figure 5 shows that
Homa/Linux needs only a few levels to achieve maximum per-
formance: it does well with 2 priorities, and additional levels
benefit only a small range of message sizes. Even with only
a single priority level, Homa’s P99 latency is still much better
than DCTCP or TCP.

5.4 Reduced load
The measurements in Section 5.2 were made under high load
(80–90% of the maximum that the protocols and network can
sustain). Figure 6 shows slowdown for Homa and DCTCP
when the load is reduced by a factor of 2x or 10x. Because of
space limitations, measurements are shown only for W4, and
only for Homa and DCTCP (other workloads are similar).

Figure 6 shows that Homa is more stable than DCTCP.
Homa’s latency for short messages varies by less than 2x
across a 10x load change, whereas DCTCP’s latency varies by
7x. Homa’s P99 short-message latency at the highest load is
40% lower than DCTCP’s P99 latency at a 10x reduced load.

Homa displays a performance inversion in Figure 6. Once
the load drops below 50% of maximum, short-message la-
tency begins to increase; Homa latencies at the lowest load
are about 25% higher than those at the highest load. The in-
version is due to C-states. At low loads, cores may be idle for
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significant periods, causing them to enter C-states; it takes 50–
100 µs to awaken them when packets arrive. I confirmed this
behavior by running the benchmark with C-states disabled:
in this case, Homa latency continues to improve with lower
loads.

Figure 6 suggests that Homa’s automatic priority allocation
mechanism may outperform the manual approaches currently
used in datacenters. Consider an application using DCTCP
whose workload matches W4, and suppose it has exclusive
use of the highest network priority. It will then behave roughly
as if it had a private network, so its performance will match
the DCTCP curve in Figure 6 corresponding to the load gen-
erated by that application. Now suppose that, instead of man-
ually allocating QoS levels, all applications switch to Homa,
and Homa uses all the priority levels to support them without
preference. The performance will now match the Homa curve
in Figure 6 corresponding to the combined load of all the ap-
plications. There is almost no overlap in these curves: shared
Homa provides better latency than differentiated DCTCP for
all but the largest 20% of messages. If those particular mes-
sage sizes are not crucial for the application’s performance, it
would be better off in a shared environment under Homa, even
though Homa offers no particular QoS support. The shared
approach would also eliminate the administrative burden of
assigning and managing QoS levels.

5.5 Buffer usage
Homa uses buffers relatively economically compared to TCP,
but its performance will degrade if buffer space is exhausted
and packets are dropped. Hai et al. measured Homa with
switch buffers limited to 200 KB per port [14]. They found
that this resulted in very poor Homa performance due to
dropped packets and the subsequent timeouts and retransmis-
sions. I analyzed buffer usage in our cluster to get a better
understanding of this issue, and found that Homa fits easily in
the buffer space available in our 25 Gbps environment.

Hai et al. assumed a fixed-size buffer for each port. How-
ever, many modern switches have dynamic buffer pools that
can be shared between ports. For example, our switches have
16 MB of buffer space, of which 13 MB can be dynamically
shared among 40 ports.

W2 W3 W4 W5 W5-6K

homa send 1.35 1.38 0.47 0.45 0.38
homa recv 2.11 2.54 1.29 1.32 1.22
homa reply 1.60 1.69 0.56 0.50 0.44
NAPI 1.29 1.76 1.18 1.37 1.01
SoftIRQ 1.31 1.58 0.90 0.87 0.82
Pacer 0.02 0.34 0.71 0.70 0.66
Timer 0.01 0.01 0.01 0.01 0.01

Total 7.69 9.29 5.11 5.03 4.53
Polling 7.30 6.25 1.05 0.18 0.30

Table 4: Total core usage for the components of Homa in the bench-
marks from Figure 3; 1.0 corresponds to 100% usage of one hyperthread
(work is actually spread across many cores). Polling time is listed sepa-
rately, and is not included in homa recv. The times for system calls do
not include time to enter and leave the kernel. “W5-6K” shows W5 with
the MTU increased from 3000 to 6000 bytes.

Using statistics maintained by the switch, I found that
Homa’s maximum buffer occupancy across all ports ranged
from 246 KB for W2 to 8.5 MB for W5, well within the
pool’s 13 MB capacity. To confirm the number for W5, I re-
duced the pool size to 9 MB and reran the benchmark: its per-
formance was unaffected and the switch recorded no packet
drops. I then further reduced the pool size to 7 and then 6
MB. At 7 MB there was still no performance degradation, but
Homa dropped 500–1000 packets per second per port under
the W5 workload. With 6 MB of buffer space, Homa dropped
about 90,000 packets per second per port under W5 (a rate of
0.13%) and performance degraded severely. For comparison,
TCP performance dropped noticeably when buffer space was
reduced to 10 MB and severely at 6 MB; DCTCP experienced
no degradation until buffer space dropped below 2 MB.

Homa’s maximum buffer usage amounts to about 220 KB
per port, which is only slightly higher than the value that pro-
duced poor results for Hai et al. It seems likely that the dy-
namic buffer pool explains the difference in our results. As-
suming that buffer usage scales with link speed, buffer re-
quirements (and availability) can be characterized in units of
Kbytes of buffer space per Gbps of aggregate switch band-
width. Homa’s maximum usage was 8.5 KB/Gbps, though
it performed well with only 7 KB/Gbps. Looking forward
to 100 Gbps networks, Broadcom’s Tomahawk 3 switching
chip [35] provides 7.5 KB/Gbps of buffer space, which ap-
pears to be adequate for Homa. I believe that Homa’s buffer
usage can be reduced, but I leave this to future work.

6 Software Overheads
As discussed in the preceding section, Homa/Linux eliminates
congestion as a significant performance factor. Tail latency is
now limited by software overheads, not network congestion.
New congestion control schemes are unlikely to be impactful
unless they also reduce software overheads (and simulation
results that omit those overheads may be misleading). Sig-
nificant gains may be had if overheads can be reduced: for
example, the RAMCloud implementation of Homa [25] has
much lower software overheads than Homa/Linux; as a result,
it provides 8x lower P99 latency for short messages in W4
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(unfortunately, the RAMCloud implementation is impractical,
as discussed below). This section provides more data on soft-
ware overheads.

As discussed previously, software overheads (in particu-
lar, hot spots due to conflicts between the thread scheduler
and network load balancers) are the primary source of tail
latency for Homa/Linux. In addition, software overheads
limit throughput and place excessive demands on cores for
packet processing. They particularly impact throughput for
short messages: the 1.6 Mops/sec maximum request rate re-
ported for servers in Table 2 consumes resources equal to 18
of the machine’s 20 cores, even though no meaningful work
is done in servicing the requests. Table 4 shows core utiliza-
tion for each of the four workloads; W2 and W3, which have
the smallest message sizes, consume almost all of the cores,
and yet they are unable to fully utilize a 25 Gbps network.
W4 and W5 process larger packets, so they use fewer cores.
The pacer thread consumes about 0.7 core for W4 and W5,
which have many large messages. Extrapolating from Table 4,
Homa/Linux will require at least 18 cores (excluding polling)
to drive a 100 Gbps network at 80% utilization.

One possible way to reduce software overhead is to increase
the MTU. However, Table 4 shows only small benefits: dou-
bling the MTU from 3000 to 6000 bytes reduces core utiliza-
tion for W5 only 11%, and workloads with smaller messages
benefit even less.

Figure 7 breaks down the best-case latency for sending and
receiving short messages. The total round-trip software over-
head is about 9.5 µs, consisting of 1.6 µs on each node to send
a message and about 3.2 µs on each node to receive one. This
is notably higher than the network time (from NIC queue to
interrupt), which is about 5.6 µs per round-trip. Figure 7 and
Table 4 show that software overheads are distributed across
many components; there is no single culprit to optimize.

Unfortunately, Figure 7 significantly understates the la-
tency for real workloads. Software overheads increase by 2–
3x when load balancing is used. This can be seen in the upper
left corner of Figure 4. The “Homa best case” RTT is about
15 µs; in this measurement, all protocol processing occurs on
a single core on each machine. However, in the W4 workload,
where protocol processing is distributed across cores, the me-
dian RTT for short requests is 3x higher (about 47 µs); only
1% of requests complete in under 30 µs. An analysis of de-

tailed timetraces showed that each stage of processing from
Figure 7 slows down by a factor of 2–3x (presumably due to
cache coherency traffic?); again, there is no single culprit.

7 The Future of Transport Protocols
The preceding sections showed that transport protocols imple-
mented in kernel software carry a painfully high cost in terms
of both application latency and core usage. Although some
improvements may be possible, such as better thread sched-
ulers that reduce hot spots from load balancing, fundamental
challenges will remain. This section discusses the possibility
of moving transport protocols out of the kernel.

7.1 Moving transport protocols to user space
Several recent projects have explored moving protocol pro-
cessing to user space, including MICA [22], RAMCloud [29],
IX [5], ZygOS [31], Shenango [27], eRPC [19], and
Snap [23]. At first glance, these systems appear to reduce
software overheads significantly. For example, Shenango
and RAMCloud can serve about 1 M requests/sec/core and
eRPC can serve 10 M requests/sec/core, vs. just 0.1 M re-
quests/sec/core for Homa/Linux. eRPC offers best-case la-
tency of 3.7 µs, vs. 15.1 µs for Homa/Linux, and the RAM-
Cloud implementation of Homa provides P99 latency for W4
less than 15 µs, vs. about 100 µs for Homa/Linux.

However, most of these systems have significant simplifi-
cations and/or restrictions, such as the following:

• They measure under unrealistic conditions like those in
Table 2.

• They don’t do load balancing, or do it in a hand-
optimized fashion that eliminates hot spots and the 2–3x
load-balancing overhead discussed above.

• The measurement workloads contain only short or only
long messages (combined workloads are both more real-
istic and more challenging).

• They don’t consider congestion control.
• They assume that every application can implement the

protocol independently (see below).
Many of the overheads experienced by Homa/Linux cannot
be eliminated; for example, at least one core will still be con-
sumed polling the NIC and receiving packets, and if output
rate limiting is needed, another core will be consumed for that.

Of the user-space systems listed above, only Snap pro-
vides a full-featured production implementation. However,
it reduces software overheads by only about 2x compared to
Homa/Linux (Snap requires 7–14 cores to drive a 100 Gbps
network at 80% load bidirectional, vs. 18 for Homa/Linux;
this is still a steep price to pay). Snap appears to incur load
balancing overheads similar to those for Homa/Linux. A sin-
gle Snap core without load balancing can drive a 100 Gbps
network at 80% load in one direction, but when load balancing
is enabled (as in the numbers for 7–14 cores above) through-
put/core drops by 3.5–7x. Furthermore, Snap reported P99 la-
tencies for short messages of 300–400 µs under high network
loads, which is 3–4x higher than Homa/Linux. This suggests
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that user-space implementations will not be a panacea for the
problem of high software overheads.

One of the challenges with user-space protocol implemen-
tations is that they perform best when every application can
implement the protocol independently. However, not all pro-
tocols fit this model. For example, Homa requires global state
for congestion control (for grant management and the pacer).
If global state is required, then the protocol must be imple-
mented in a shared service and packets must pass through that
service on their way to and from the network. This introduces
extra core/thread crossings, adding significant overhead. Snap
uses this approach, which could explain why its overhead is
higher than many other user-level protocol implementations.
7.2 Moving transport protocols to the NIC
The challenges with software transport protocols will only get
worse in the future, since network speeds are increasing while
CPU speeds are static. We are approaching a point where it no
longer makes sense to implement transport protocols in soft-
ware. The alternative is to move them entirely to the NIC;
applications would communicate directly with the NIC using
kernel bypass. Packets would no longer be visible to host soft-
ware: all communication with the NIC would be in terms of
messages. In addition, the NIC would implement intelligent
load balancing, such as distributing incoming requests across
available threads in a service, so that packets do not need to
pass through an additional core just for load balancing.

Moving the transport protocol to the NIC would reduce
end-to-end application latency by at least 5x, increase small-
message throughput by 5–10x, and use silicon real estate more
efficiently, freeing cores currently used for inefficient protocol
processing so they can run application code instead. Reduc-
ing end-to-end latency would also reduce RTTbytes, cutting
buffer consumption in the switches. This transition could be
as impactful for system performance as the transition from
programmed I/O to direct memory access in the 1960’s.

Designing such a NIC will be challenging; it will require a
new architecture that combines a line-rate packet processing
pipeline with enough programmability to allow a variety of
transport features and to support easy transport maintenance
and evolution. The NIC will also need to support network vir-
tualization features commonly implemented in software today
[30, 9]. There exist systems that provide some of the required
features, but none is fully satisfactory. For example:

• RDMA NICs provide kernel bypass and low latency, but
their mechanisms for congestion control and load bal-
ancing are inadequate. In addition, existing NICs are not
open or programmable.

• Today’s “smart NICs” have inadequate performance
and/or programmability. Smart NICs come in two fla-
vors. The first is implemented with many general-
purpose cores. These NICs still implement transport pro-
tocols in software, with all the performance problems
discussed above. The second flavor is based on FPGAs;
they can potentially provide adequate performance, but
are difficult to program.

• New packet processing pipelines such as P4 [6, 7] op-
erate at line rate and are programmable, but they do not
currently have enough power to implement transport pro-
tocols. As one example, P4 does not provide long-lived
state that is required for transport protocols.

One promising direction of research is to extend P4 with ad-
ditional mechanisms to meet the needs of transport proto-
cols [18]; this work is still embryonic.

7.3 The future of TCP
TCP has a long and illustrious history, and it has found use
across an extraordinary range of technologies and environ-
ments. However, datacenters did not exist when TCP was de-
signed, and virtually every aspect of the TCP design is wrong
for the datacenter:

• Its connections create high space and time overheads.
• Its stream orientation is awkward for applications and

causes high tail latency due to head-of-line blocking.
• Its fair scheduling increases tail latency for all message

sizes.
• Its sender-driven congestion control ensures buffer occu-

pancy at high loads, which drives up tail latency.
• It doesn’t take advantage of in-network priority queues.
• It requires in-order delivery, restricting opportunities for

load balancing both in network hardware and host soft-
ware.

Furthermore, TCP’s high implementation complexity will
make it difficult to implement in hardware. Thus, it is difficult
to imagine a path to high performance datacenter networking
that is based on TCP.

8 Related Work
The last decade has seen many proposals to improve TCP per-
formance and/or solve the congestion control problem for dat-
acenters. Examples include DCTCP [1], D3 [37], HULL [2],
D2TCP [36], PDQ [17], pFabric [3], PIAS [4], QJUMP [13],
pHost [11], Karuna [8], and NDP [15]. Of these, DCTCP
appears to be the only one with a readily-available Linux im-
plementation that can be compared with Homa/Linux.

Homa’s congestion control mechanism is effective against
congestion at the network edge, but it does not address con-
gestion in the core. Several other recent projects have ad-
dressed core congestion, including TIMELY [24], HPCC [21],
and Swift [20]. Swift and Homa could probably be synergis-
tically combined, with Swift dynamically adjusting RTTbytes
to manage congestion in the core while Homa eliminates it at
the edge. At the same time, it seems possible that core conges-
tion is due primarily to TCP’s requirement of flow-consistent
routing, and that a datacenter using Homa with packet spray-
ing would not experience significant core congestion; this
would be an interesting experiment for future work.

Aeolus [14] proposed modifications to Homa to improve
performance when buffer space is exhausted. However, mea-
surements in Section 5.5 indicate that buffer exhaustion is un-
likely to occur in modern switches with shared buffer pools,
so the Aeolus modifications are not necessary.
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As mentioned in Section 6, several recent projects have
developed network transports outside the kernel in order to
avoid the overheads of an in-kernel transport. Examples in-
clude MICA [22], RAMCloud [29], IX [5], ZygOS [31],
Shenango [26, 27], eRPC [19], and Snap [23].

9 Conclusion
This paper has demonstrated two things. First, it has shown
that the Homa transport protocol can be implemented in a
practical setting that allows it to be used by a variety of
applications. Homa/Linux retains the benefits of Homa’s
congestion-control mechanism and outperforms TCP and
DCTCP by a wide margin, offering order-of-magnitude lower
tail latencies across a range of workloads and message sizes.

Second, this paper has shown that the battle for networking
performance is shifting from network protocols to software
overheads. Increasing network speeds make it ever more dif-
ficult to do protocol processing in software, and overheads in-
crease as more cores are harnessed. If these overheads can be
eliminated, for example with new NIC architectures, another
factor of 5–10x in networking performance is possible.
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11 Appendix
This appendix provides additional details on a few aspects of
the Homa/Linux implementation.

11.1 GRO packet batching
As discussed in Section 4.1, Homa/Linux collects incoming
packets into batches for SoftIRQ processing without regard
to message structure. Unfortunately, the Linux infrastructure
segregates incoming packets using a hash of packet header
fields. When a new packet arrives, Linux uses its hash to find
a list of packets being held for batching (if any) that match
that hash. Then it passes the new packet and the held list to
a transport-specific function. The transport-specific function
can batch the packet with an existing packet on the list (by
incorporating it into a sublist within the existing packet). If
the transport-specific function chooses not to batch the new
packet with an existing one, then Linux adds the new packet
to the list as a “root” for future batching.

This default mechanism prevents transports from batching
packets that hash to different lists. However, the transport-
specific function has a third option, which is to indicate that
it has completely processed the packet, so Linux should not
add it to the list or take any other actions. Homa/Linux takes

advantage of this feature. Homa/Linux keeps track of a dis-
tinguished held list for each core (the one corresponding to
the first packet received by that core). When packets arrive
for any other held list, Homa/Linux ignores that list, merges
the packet with the first Homa packet on the distinguished list
instead, and indicates to Linux that the packet has been fully
processed. As a result, all incoming Homa packets are merged
together into a single batch. When the batch is transmitted to
SoftIRQ, the distinguished list is reset.

11.2 skbuff management
Homa/Linux uses regular Linux skbuffs for packet buffering.
It increments the reference count on transmitted skbuffs in or-
der to retain them until they have been acknowledged. The
original skbuff cannot be retransmitted because transmission
is not idempotent; for example, lower-level protocol headers
get prepended as the buffer traverses the IP stack. Thus, if re-
transmission is required, Homa/Linux copies the skbuff’s data
into a new skbuff.

Homa/Linux keeps the skbuffs for an incoming message in
a list sorted by offset in the message. New packets are inserted
into the list starting at the back (highest offset). With this
approach, packet insertion will not require traversing many
list elements unless the packet has been delayed a long time.

11.3 Synchronization details
Homa/Linux’s approach to socket locking allows it to avoid
the awkward mechanism used elsewhere in Linux for locking
sockets in SoftIRQ handlers (a SoftIRQ handler could have
interrupted a background thread that holds the socket lock
needed by SoftIRQ, so SoftIRQ cannot wait for socket locks;
when it finds a locked socket, it defers packet processing un-
til the thread releases the lock). Instead, Homa/Linux uses
spinlocks for sockets, with interrupts disabled. This prevents
an application thread from being interrupted while holding a
socket lock.

Homa/Linux takes advantage of the Linux RCU mechanism
to prevent sockets from being deleted while operations are un-
derway on them. This eliminates the need to acquire socket
locks in some situations, and is particularly useful in situa-
tions where it would have been necessary to acquire the socket
lock before acquiring RPC locks (this would violate ordering
constraints necessary to prevent deadlock).
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