
Standards
Editor: Barry Leiba • barryleiba@computer.org

60 Published by the IEEE Computer Society 1089-7801/14/$31.00 © 2014 IEEE IEEE INTERNET COMPUTING

T he Transport Layer Security (TLS) protocol,
or as it’s sometimes referred to, the Secure
Sockets Layer (SSL) protocol, is a stateful,

connection-oriented, client-server protocol. It’s
arguably the most widely deployed communica-
tions security protocol on the Internet, provid-
ing authentication, integrity, and confidentiality
for two parties. It’s probably most widely known
as the protocol that, coupled with HTTP, secures
the Web and uses the https URI scheme. There’s
a good chance that even your nontechie friends
and relatives have heard of TLS or SSL because of
recent headlines describing vulnerabilities affect-
ing certain implementations; in some instances,
these vulnerabilities affected a good-sized chunk
of secure Internet Web servers. One thing to keep
in mind, though, is that TLS is used for more than
just securing the Web. Here, I explore where TLS
came from and what problem it was trying to
solve, how it works, and what it doesn’t do. I also
provide a snapshot of anticipated revisions for
the next version.

How Did We Get Here?
Before the Web became a thing, people accessed
information on the Internet using protocols such
as Telnet1 and FTP,2 and a little later, Gopher3; at
least, these were the protocols my friends and I
used most. When the Web showed up, the formi-
dable HTTP and HTML combo supplanted these
protocols; some might say this was due to the
graphical user interface making the Internet more
accessible to the average Joe/Jane (that is, non-
scientists and engineers), but I digress. These pro-
tocols needed to transmit sensitive data from the
client to the server in the form of the username/
password tuple, which allowed client access to
the data on the server. However, the prevailing

winds at the time blew toward securing all of the
data exchanged between the client and server;
this all helped commercialize the Web. I like to
think of it as the Web’s Jerry McGuire moment:
those trying to operate businesses on the Internet
needed people to have the confidence to give up
their credit-card numbers to make money, and
this was going to enable it.

And the Winner Is …
To be clear, TLS wasn’t anointed winner right out
of the gate — at least two skirmishes occurred.

The first was over where to do it. Although
the Internet Security Protocol (IPsec),4 which was
under development around the same time, could
have been used instead of TLS, IPsec is realized in
kernel space, whereas TLS is realized in the user
space. Kernel changes, by all accounts I’ve heard,
take a long time to become ubiquitous, while dis-
tributing an application in user space is much
quicker. The win here goes to TLS.

The second question was which protocol to
use. There were really two competing propos-
als: Netscape’s SSL and Microsoft’s Private Com-
munications Technology (PCT).5 Remember that
these were interesting times: these two propos-
als were developed by the main protagonists in
the first installment of the so-called “browser
wars.” PCT had some issues and wasn’t widely
deployed; regardless, some say it did its job by
getting Netscape to release SSL to a standards
development organization (SDO) — more on this
next. Depending on how you score it, the win
here goes to TLS.

Now, because the Web ended up everywhere,
code reuse is common, and designing security
protocols is hard, SSL/TLS got adopted by a lot of
application-layer protocols.

Transport Layer Security
Sean Turner • IECA

Transport Layer Security is the standard, widely deployed protocol for securing

client-server communications over the Internet. TLS is designed to prevent

eavesdropping, tampering, and message forgery for client-server applications.

Here, the author looks at the collection of standards that make up TLS,

including its history, protocol, and future.

Transport Layer Security

NOvEMbER/DECEMbER 2014 61

Something Wicked (Cool)
This Way Comes
Netscape first developed SSL 1.0 in
the middle of 1994. The 1.0 specifi-
cation was never distributed beyond
Netscape; the secondhand scuttle-
butt was that it had some issues with
the integrity mechanism (something
about the interaction of the MD5-
based integrity mechanism and the
RC4 cipher interaction) and lacked
replay protection. These problems led
to SSL 2.0 at the beginning of 1995,6
but it too had issues, which are docu-
mented in RFC 6176.7 These problems
ultimately led most implementations
to disable SSL 2.0 by default. SSL 3.0
arrived in 1996 to address the known
SSL 2.0 deficiencies, and gained wide-
spread deployment. It was published
many years later — some might say
posthumously — as RFC 6101.8

The King Is Dead, Long
Live the King
Development of the protocol formerly
known as SSL and henceforth referred
to as TLS moved from Netscape to the
IETF TLS working group (WG) in mid
1996. TLS 1.0 wasn’t a rubberstamp of
SSL 3.0; some changes were trivial, such
as incrementing the version number and
trimming the list of ciphers to those that
were public; other revisions were more
structural, such as changing the proce-
dures for key generation and authenti-
cation. Over the years, the TLS WG has
produced three versions — TLS 1.0 in
1999, TLS 1.1 in 2006, and TLS 1.2 in
2008 — tweaking the protocol along the
way to address known issues and add
features. Work on TLS 1.3 is under way,
and it’s not entirely clear where it will
end up. What follows is a description
focusing on pre-1.3 versions.

How Does This Thing Work?
Since SSL 3.0, the protocol’s design has
basically remained the same, although
some underlying details have changed.
The protocol has two parts. The hand-
shaking protocol comes first; it negoti-
ates the cipher suite, authenticates the

server and, optionally, the client, and
establishes the session keys. After the
handshake comes the record protocol,
which secures the application data
with the session key established in the
record protocol and verifies the appli-
cation data’s integrity and origin.

Let’s Get This Party Started!
The handshaking protocol actually
has three sub-protocols. The hand-
shake protocol does the heavy lifting
by negotiating the version of the pro-
tocol, the session identifier, the peer’s
public key (optionally), the compres-
sion method, the cipher specification,
and the master secret.

The alert protocol, which isn’t nor-
mally sent during the handshake proto-
col, notifies the peer about the cause of
a protocol failure. Alerts are categorized
as either a failure alert, in which case
the session is terminated, or a warning
alert, in which case the recipient gets
the choice to end the session. Fatal
warnings result in terminated connec-
tions that can’t be resumed.

The change cipher specification pro-
tocol informs the peer that the sender
wants to change to a new set of keys,
which are created from information
exchanged by the handshake protocol.

For a new session, the “normal”
protocol flow — by which I mean clients
and servers negotiating the mandatory-
to-implement cipher suite (more about
this later) — can begin anytime after a
TCP ACK is received, and goes a little
like this:

The client sends a client hello mes-
sage to the server, which includes the
highest protocol version the client sup-
ports and a client-generated random
number, as well as a list of client-sup-
ported cipher suites and compression
methods, and finally an empty session
identifier field.

Next, the server returns the fol-
lowing three messages to the client:

•	 An appropriately named server hello
message that includes the same
fields as the client hello, except here

the server indicates the values to be
used for that session: the protocol
version, the cipher suite, the com-
pression method, and the session
identifier, as well as a server-gener-
ated random number.

•	 A certificate message that contains
a list of certificates, including its
own and possibly some intermedi-
ate certification authority (CA) cer-
tificates, which the client will use to
authenticate the server.

•	 A server hello done message to
indicate that the server is done with
key-exchange-related messages
and that it’s time for the client to
start its part of the key-exchange
process.

The client then creates a random
pre-master secret and encrypts it with
the public key from the server’s cer-
tificate. The client sends the server the
following:

•	 The encrypted pre-master secret in
the “client key-exchange” message.

•	 A change cipher spec message to
let the server know to start using
the newly established sessions for
hashing and encryption messages.
Technically, this message isn’t a
handshake message, but rather an
independent TLS message type to
avoid pipeline stalls.

•	 A finished message, which the cli-
ent must send immediately after
a change cipher spec message.
This lets the peer — in this case,
the server — verify that the key
exchange and authentication pro-
cesses were successful. It’s the con-
catenation of the master secret, a
finished label (either client finished
or server finished), and a hash of
all handshake messages up to but
not including this one. The result-
ing concatenated blob is then fed
into a pseudo-random function
(PRF). Note that the finished mes-
sage’s format has changed over
time; where once it was fixed, it’s
now cipher-suite-specified.

Standards

62 www.computer.org/internet/ IEEE INTERNET COMPUTING

The server next returns a change
cipher spec, indicating that it will use
the indicated cipher suites henceforth,
and a server finished message.

After the client receives and veri-
fies the server’s finished message, it
can proceed to protect application data
with the record protocol.

Options Abound
It should come as no surprise that there
are many other ways to implement
TLS because it has come to support an
extremely broad number of use cases.
These different use cases require differ-
ent messages to support things such as
in-band client authentication as well as
different types of cipher suites.

If a server wishes to have a client
use an in-band mechanism as opposed
to an HTTP-based or Web form-based
mechanism, it can request that the cli-
ent authenticate with the server using
client certificates. To do this, the server
sends a certificate request message
along with the other messages in the
first flight of messages returned after
the client hello. The client returns cli-
ent certificate and certificate verify
messages with its second flight of
messages. Hello extensions,9 which
are supported in TLS versions but no
SSL version, let the client more easily
obtain Online Certificate Status Pro-
tocol10 responses for the server’s cer-
tificate as well as the intermediate CA
certificates returned in the server cer-
tificate message. If X.509 certificates
aren’t your cup of tea, then another
option is to negotiate the use of Open-
PGP11 or raw public keys12 for the cli-
ent, server, or both.

Different cipher suites — where a
cipher suite specifies a key-exchange
algorithm, a bulk encryption algorithm
(its mode and its secret key length), a
MAC algorithm, and a PRF — require
different information. If the key-
exchange algorithm being negotiated
is an anonymous Diffie-Hellman (DH)
or ephemeral DH (DHE), then there is
no need to send the server or client
certificate message, certificate request

message, or certificate verify message.
Instead, the server sends a server key-
exchange message to provide enough
information for the client to encrypt
the premaster secret returned in the cli-
ent key-exchange message. An option
also exists to negotiate preshared key
(PSK) suites,13 which lets clients and
servers negotiate

•	 only symmetric key algorithms,
which are often touted as suitable
for performance-constrained use
cases because public-key operations
are “costly”;

•	 a PSK to authenticate a DHE
exchange; and

•	 the use of RSA and the server’s cer-
tificate to authenticate the server,
as well as the use of the PSK for
mutual authentication.

The first PSK case is similar to the
anonymous DH option because no
certificates are needed, and certificate-
related messages aren’t exchanged on
the server and client key-exchange
messages. The second PSK case dif-
fers from the first in the parameters
included in the server and client key-
exchange messages. An option is also
available to support Secure Remote
Password (SRP) cipher suites,14 which
aren’t susceptible to offline dictionary
attacks, and let application-layer pro-
tocols use username/password tuples
in-band. The server never asks the cli-
ent for a certificate. Depending on the
SRP cipher suite, the server either sends
a certificate message but no certificate-
verify message along with the server
key-exchange message to the client,
or just the server key-exchange mes-
sage. DH suites can also be negotiated
instead of RSA (that is, key agreement
versus key transport). Elliptic curve (EC)
variants of DH, DHE, and anonymous
DH can also be negotiated. When nego-
tiating EC algorithms, the curves as well
as the key formats (such as compressed
or uncompressed) that the client sup-
ports can be provided in the client hello
extensions defined in RFC 4492.15

Not to be outdone by the num-
ber of key-exchange algorithms, a
whole bunch of bulk-encryption algo-
rithms are also available. RC4 and the
Advanced Encryption Standard are the
most widely used; the rest are national
algorithms such as GOST, Camellia,
SEED, and ARIA. Authenticated Encryp-
tion and Authenticated Data (AEAD)
algorithms such as Galois Counter Mode
and Counter with CBC-MAC are also
supported.

In addition to client authentica-
tion and cipher-suite-based options,
TLS 1.2 (but maybe not TLS 1.3) sup-
ports the session resumption. Here,
rather than sending an empty ses-
sion ID in the client hello, the client
sends the session ID of the session to
be resumed. The server responds with
server hello, change cipher spec, and
server finished messages. The client
then responds with change cipher
spec and client finished messages.

Finally, either clients or servers can
initiate a renegotiation of the cipher
suites. When the server initiates them, it
sends a hello request message to the cli-
ent that in turn triggers the client to ini-
tiate a new handshake. Clients can also
initiate a renegotiation at any time sim-
ply by sending a client hello message.

Time to Make the Donuts
TLS likely got its name from the record
protocol because it’s the bit of the pro-
tocol that performs the transport-like
functions — namely, it handles frag-
menting, transmission, receiving, and
defragmenting. Depending on the algo-
rithms negotiated during the handshake,
application data can be compressed,
MACed, and encrypted before transmis-
sion and subsequently received, decom-
pressed, verified, and decrypted.

Wait, You Mean It Doesn’t
Do That?
The not-so-subtle point from the pre-
vious paragraphs is that TLS can be
configured to operate as securely as
possible or in some horrifically bro-
ken way. It’s up to administrators to

Transport Layer Security

NOvEMbER/DECEMbER 2014 63

ensure that their servers are config-
ured properly. Also, cryptographic
algorithms weaken over time, so it’s a
good idea to check the server’s config-
uration file to make sure that strong
ciphers are preferred over weak ones.

TLS isn’t going to automatically
update itself if an implementation bug
such as the now famous heartbleed
bug is discovered. Deploying updated
software or disabling insecure options,
my friends, is up to server adminis-
trators and those that control their
budgets.

TLS is a two-party protocol. Clients
are only assured of end-to-end security
when the server is the TLS session end-
point, and the application data resides
on said server. If the data resides else-
where, then even with TLS sessions
between the servers, the data isn’t truly
protected from end to end. There have
also been numerous attempts to intro-
duce another party into the protocol.
What they’re called depends on your
viewpoint: proxies or men in the middle.

TLS relies on a reliable transport
protocol — mostly TCP. Datagram
Transport Layer Security (DTLS)16 is
used with unreliable transports such
as UDP.

S ome have said TLS’s time has come
and gone, and that it’s time to move

to an entirely new protocol. Not every-
one agrees with this sentiment. The
TLS WG is actively working on TLS 1.3
with the following goals in mind:

•	 Encrypt as much of the handshake
as possible to reduce the amount
of observable data to both passive
and active attackers.

•	 Reduce handshake latency to pri-
marily support HTTP-based applica-
tions with the aim of one roundtrip
(1-RTT) for a full handshake and
one or zero roundtrips (0-RTT) for
repeated handshakes.

•	 Update payload protection crypto-
graphic mechanisms and algorithms
to address known weaknesses in

the CBC block cipher modes and to
replace RC4.

•	 Reevaluate handshake content.

Some of the major decisions made to
date would do the following:

•	 Remove support for compression.
The application handles this better,
and it’s been the source of numer-
ous well-known attacks (such as
Beast and Crime).

•	 Remove support for static RSA and
DH static key exchange. These types
of ciphers don’t support perfect for-
ward secrecy (PFS).

•	 Remove support for non-AEAD
ciphers.

•	 Move EC algorithms to the standards
track. Still to be decided is whether
an EC-based algorithm will be the
mandatory-to-implement algorithm.

Work is ongoing, so if you’re inter-
ested and have some constructive crit-
icism, please come and get involved
(see http://datatracker.ietf.org/wg/tls/
documents).

References
1. J. Postel and J. Reynolds, Telnet Protocol

Specification, IETF RFC 854, May 1983;

https://datatracker.ietf.org/doc/rfc854/.

2. J. Postel and J. Reynolds, File Transfer

Protocol (FTP), IETF RFC 959, Oct. 1995;

http://datatracker.ietf.org/doc/rfc959/.

3. F. Anklesaria et al., The Internet Gopher Pro-

tocol: A Distributed Document Search and

Retrieval Protocol, IETF RFC 1436, Mar. 1993;

https://datatracker.ietf.org/doc/rfc1436/.

4. S. Kent and K. Seo, Security Architecture

for the Internet Protocol, IETF RFC 4301,

Dec. 2005; https://datatracker.ietf.org/doc/

rfc4301/.

5. J. Benaloh et al., The Private Communi-

cation Technology Protocol, IETF Internet

draft, work in progress, Oct. 1995.

6. K. Hickman, The SSL Protocol, IETF Inter-

net draft, work in progress, Apr. 1995.

7. S. Turner and T. Polk, Prohibiting Secure

Sockets Layer (SSL) Version 2.0, IETF RFC

6176, Mar. 2011; https://datatracker.ietf.

org/doc/rfc6176/.

8. A. Freier, P. Karlton, and P. Cocher, The

Secure Sockets Layer (SSL) Protocol Ver-

sion 3.0, IETF RFC 6101, Aug. 2011; https://

datatracker.ietf.org/doc/rfc6101/.

9. D. Eastlake, Transport Layer Security (TLS)

Extensions: Extension Definitions, IETF

RFC 6066, Jan. 2011; https://datatracker.

ietf.org/doc/rfc6066/.

10. Y. Pettersen, The Transport Layer Security

(TLS) Multiple Certificate Status Request

Extension, IETF RFC 6961, June 2013; https://

datatracker.ietf.org/doc/rfc6961/.

11. N. Mavrogiannopoulos and D.K Gillmor,

Using OpenPGP Keys for Transport Layer

Security (TLS) Authentication, IETF RFC

6091, Feb. 2011; https://datatracker.ietf.org/

doc/rfc6091/.

12. P. Wouters et al., Using Raw Public Keys in

Transport Layer Security (TLS) and Data-

gram Transport Layer Security (DTLS), IETF

RFC 7250, June 2014; https://datatracker.

ietf.org/doc/rfc7250/.

13. P. Eronen and H. Tschofenig, Pre-Shared

Key Ciphersuites for Transport Layer Secu-

rity (TLS), IETF RFC 4279, Dec. 2005; https://

datatracker.ietf.org/doc/rfc4279/.

14. D. Taylor et al., Using the Secure Remote

Password (SRP) Protocol for TLS Authenti-

cation, IETF RFC 5054; Nov. 2007; https://

datatracker.ietf.org/doc/rfc5054/.

15. S. Blake-Wilson et al., Elliptic Curve Cryptog-

raphy (ECC) Cipher Suites for Transport Layer

Security (TLS), IETF RFC 4492, May 2006;

https://datatracker.ietf.org/doc/rfc4492/.

16. E. Rescorla and N. Modadugu, Datagram

Transport Layer Security Version 1.2, IETF

RFC 6347, Jan. 2012; https://datatracker.

ietf.org/doc/rfc6347/.

Sean Turner is founder and principal engi-

neer at IECA. He received a BEE from the

Georgia Institute of Technology. Turner is

a long-time member of IEEE, active in the

IETF, and coauthor of Implementing Email

and Security Tokens: Current Standards,

Tools, and Practices (Wiley, 2008). Contact

him at turners@ieca.com.

Selected CS articles and columns
are also available for free at http://

ComputingNow.computer.org.

