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T he Transport Layer Security (TLS) protocol, 
or as it’s sometimes referred to, the Secure 
Sockets Layer (SSL) protocol, is a stateful, 

connection-oriented, client-server protocol. It’s 
arguably the most widely deployed communica-
tions security protocol on the Internet, provid-
ing authentication, integrity, and confidentiality 
for two parties. It’s probably most widely known 
as the protocol that, coupled with HTTP, secures 
the Web and uses the https URI scheme. There’s 
a good chance that even your nontechie friends 
and relatives have heard of TLS or SSL because of 
recent headlines describing vulnerabilities affect-
ing certain implementations; in some instances, 
these vulnerabilities affected a good-sized chunk 
of secure Internet Web servers. One thing to keep 
in mind, though, is that TLS is used for more than 
just securing the Web. Here, I explore where TLS 
came from and what problem it was trying to 
solve, how it works, and what it doesn’t do. I also 
provide a snapshot of anticipated revisions for 
the next version.

How Did We Get Here?
Before the Web became a thing, people accessed 
information on the Internet using protocols such 
as Telnet1 and FTP,2 and a little later, Gopher3; at 
least, these were the protocols my friends and I 
used most. When the Web showed up, the formi-
dable HTTP and HTML combo supplanted these 
protocols; some might say this was due to the 
graphical user interface making the Internet more 
accessible to the average Joe/Jane (that is, non-
scientists and engineers), but I digress. These pro-
tocols needed to transmit sensitive data from the 
client to the server in the form of the username/
password tuple, which allowed client access to 
the data on the server. However, the prevailing 

winds at the time blew toward securing all of the 
data exchanged between the client and server; 
this all helped commercialize the Web. I like to 
think of it as the Web’s Jerry McGuire moment: 
those trying to operate businesses on the Internet 
needed people to have the confidence to give up 
their credit-card numbers to make money, and 
this was going to enable it.

And the Winner Is …
To be clear, TLS wasn’t anointed winner right out 
of the gate — at least two skirmishes occurred.

The first was over where to do it. Although 
the Internet Security Protocol (IPsec),4 which was 
under development around the same time, could 
have been used instead of TLS, IPsec is realized in 
kernel space, whereas TLS is realized in the user 
space. Kernel changes, by all accounts I’ve heard, 
take a long time to become ubiquitous, while dis-
tributing an application in user space is much 
quicker. The win here goes to TLS.

The second question was which protocol to 
use. There were really two competing propos-
als: Netscape’s SSL and Microsoft’s Private Com-
munications Technology (PCT).5 Remember that 
these were interesting times: these two propos-
als were developed by the main protagonists in 
the first installment of the so-called “browser 
wars.” PCT had some issues and wasn’t widely 
deployed; regardless, some say it did its job by 
getting Netscape to release SSL to a standards 
development organization (SDO) — more on this 
next. Depending on how you score it, the win 
here goes to TLS.

Now, because the Web ended up everywhere, 
code reuse is common, and designing security 
protocols is hard, SSL/TLS got adopted by a lot of 
application-layer protocols.
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Something Wicked (Cool)  
This Way Comes
Netscape first developed SSL 1.0 in 
the middle of 1994. The 1.0 specifi-
cation was never distributed beyond 
Netscape; the secondhand scuttle-
butt was that it had some issues with 
the integrity mechanism (something 
about the interaction of the MD5-
based integrity mechanism and the 
RC4 cipher interaction) and lacked 
replay protection. These problems led 
to SSL 2.0 at the beginning of 1995,6 
but it too had issues, which are docu-
mented in RFC 6176.7 These problems 
ultimately led most implementations 
to disable SSL 2.0 by default. SSL 3.0 
arrived in 1996 to address the known 
SSL 2.0 deficiencies, and gained wide-
spread deployment. It was published 
many years later — some might say 
posthumously — as RFC 6101.8

The King Is Dead, Long  
Live the King
Development of the protocol formerly 
known as SSL and henceforth referred 
to as TLS moved from Netscape to the 
IETF TLS working group (WG) in mid 
1996. TLS 1.0 wasn’t a rubberstamp of 
SSL 3.0; some changes were trivial, such 
as incrementing the version number and 
trimming the list of ciphers to those that 
were public; other revisions were more 
structural, such as changing the proce-
dures for key generation and authenti-
cation. Over the years, the TLS WG has 
produced three versions — TLS 1.0 in 
1999, TLS 1.1 in 2006, and TLS 1.2 in 
2008 — tweaking the protocol along the 
way to address known issues and add 
features. Work on TLS 1.3 is under way, 
and it’s not entirely clear where it will 
end up. What follows is a description 
focusing on pre-1.3 versions.

How Does This Thing Work?
Since SSL 3.0, the protocol’s design has 
basically remained the same, although 
some underlying details have changed. 
The protocol has two parts. The hand-
shaking protocol comes first; it negoti-
ates the cipher suite, authenticates the 

server and, optionally, the client, and 
establishes the session keys. After the 
handshake comes the record protocol, 
which secures the application data 
with the session key established in the 
record protocol and verifies the appli-
cation data’s integrity and origin.

Let’s Get This Party Started!
The handshaking protocol actually 
has three sub-protocols. The hand-
shake protocol does the heavy lifting 
by negotiating the version of the pro-
tocol, the session identifier, the peer’s 
public key (optionally), the compres-
sion method, the cipher specification, 
and the master secret.

The alert protocol, which isn’t nor-
mally sent during the handshake proto-
col, notifies the peer about the cause of 
a protocol failure. Alerts are categorized 
as either a failure alert, in which case 
the session is terminated, or a warning 
alert, in which case the recipient gets 
the choice to end the session. Fatal 
warnings result in terminated connec-
tions that can’t be resumed.

The change cipher specification pro-
tocol informs the peer that the sender 
wants to change to a new set of keys, 
which are created from information 
exchanged by the handshake protocol.

For a new session, the “normal” 
protocol flow — by which I mean clients 
and servers negotiating the mandatory-
to-implement cipher suite (more about 
this later) — can begin anytime after a 
TCP ACK is received, and goes a little 
like this:

The client sends a client hello mes-
sage to the server, which includes the 
highest protocol version the client sup-
ports and a client-generated random 
number, as well as a list of client-sup-
ported cipher suites and compression 
methods, and finally an empty session 
identifier field.

Next, the server returns the fol-
lowing three messages to the client:

•	 An appropriately named server hello 
message that includes the same 
fields as the client hello, except here 

the server indicates the values to be 
used for that session: the protocol 
version, the cipher suite, the com-
pression method, and the session 
identifier, as well as a server-gener-
ated random number.

•	 A certificate message that contains 
a list of certificates, including its 
own and possibly some intermedi-
ate certification authority (CA) cer-
tificates, which the client will use to 
authenticate the server.

•	 A server hello done message to 
indicate that the server is done with 
key-exchange-related messages 
and that it’s time for the client to 
start its part of the key-exchange 
process.

The client then creates a random 
pre-master secret and encrypts it with 
the public key from the server’s cer-
tificate. The client sends the server the 
following:

•	 The encrypted pre-master secret in 
the “client key-exchange” message.

•	 A change cipher spec message to 
let the server know to start using 
the newly established sessions for 
hashing and encryption messages. 
Technically, this message isn’t a 
handshake message, but rather an 
independent TLS message type to 
avoid pipeline stalls.

•	 A finished message, which the cli-
ent must send immediately after 
a change cipher spec message. 
This lets the peer — in this case, 
the server — verify that the key 
exchange and authentication pro-
cesses were successful. It’s the con-
catenation of the master secret, a 
finished label (either client finished 
or server finished), and a hash of 
all handshake messages up to but 
not including this one. The result-
ing concatenated blob is then fed 
into a pseudo-random function 
(PRF). Note that the finished mes-
sage’s format has changed over 
time; where once it was fixed, it’s 
now cipher-suite-specified.
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The server next returns a change 
cipher spec, indicating that it will use 
the indicated cipher suites henceforth, 
and a server finished message.

After the client receives and veri-
fies the server’s finished message, it 
can proceed to protect application data 
with the record protocol.

Options Abound
It should come as no surprise that there 
are many other ways to implement 
TLS because it has come to support an 
extremely broad number of use cases. 
These different use cases require differ-
ent messages to support things such as 
in-band client authentication as well as 
different types of cipher suites.

If a server wishes to have a client 
use an in-band mechanism as opposed 
to an HTTP-based or Web form-based 
mechanism, it can request that the cli-
ent authenticate with the server using 
client certificates. To do this, the server 
sends a certificate request message 
along with the other messages in the 
first flight of messages returned after 
the client hello. The client returns cli-
ent certificate and certificate verify 
messages with its second flight of 
messages. Hello extensions,9 which 
are supported in TLS versions but no 
SSL version, let the client more easily 
obtain Online Certificate Status Pro-
tocol10 responses for the server’s cer-
tificate as well as the intermediate CA 
certificates returned in the server cer-
tificate message. If X.509 certificates 
aren’t your cup of tea, then another 
option is to negotiate the use of Open-
PGP11 or raw public keys12 for the cli-
ent, server, or both.

Different cipher suites — where a 
cipher suite specifies a key-exchange 
algorithm, a bulk encryption algorithm 
(its mode and its secret key length), a 
MAC algorithm, and a PRF — require 
different information. If the key-
exchange algorithm being negotiated 
is an anonymous Diffie-Hellman (DH) 
or ephemeral DH (DHE), then there is 
no need to send the server or client 
certificate message, certificate request 

message, or certificate verify message. 
Instead, the server sends a server key-
exchange message to provide enough 
information for the client to encrypt 
the premaster secret returned in the cli-
ent key-exchange message. An option 
also exists to negotiate preshared key 
(PSK) suites,13 which lets clients and 
servers negotiate 

•	 only symmetric key algorithms, 
which are often touted as suitable 
for performance-constrained use 
cases because public-key operations 
are “costly”;

•	 a PSK to authenticate a DHE 
exchange; and

•	 the use of RSA and the server’s cer-
tificate to authenticate the server, 
as well as the use of the PSK for 
mutual authentication.

The first PSK case is similar to the 
anonymous DH option because no 
certificates are needed, and certificate-
related messages aren’t exchanged on 
the server and client key-exchange 
messages. The second PSK case dif-
fers from the first in the parameters 
included in the server and client key-
exchange messages. An option is also 
available to support Secure Remote 
Password (SRP) cipher suites,14 which 
aren’t susceptible to offline dictionary 
attacks, and let application-layer pro-
tocols use username/password tuples 
in-band. The server never asks the cli-
ent for a certificate. Depending on the 
SRP cipher suite, the server either sends 
a certificate message but no certificate-
verify message along with the server 
key-exchange message to the client, 
or just the server key-exchange mes-
sage. DH suites can also be negotiated 
instead of RSA (that is, key agreement 
versus key transport). Elliptic curve (EC) 
variants of DH, DHE, and anonymous 
DH can also be negotiated. When nego-
tiating EC algorithms, the curves as well 
as the key formats (such as compressed 
or uncompressed) that the client sup-
ports can be provided in the client hello 
extensions defined in RFC 4492.15

Not to be outdone by the num-
ber of key-exchange algorithms, a 
whole bunch of bulk-encryption algo-
rithms are also available. RC4 and the 
Advanced Encryption Standard are the 
most widely used; the rest are national 
algorithms such as GOST, Camellia, 
SEED, and ARIA. Authenticated Encryp-
tion and Authenticated Data (AEAD) 
algorithms such as Galois Counter Mode 
and Counter with CBC-MAC are also 
supported.

In addition to client authentica-
tion and cipher-suite-based options, 
TLS 1.2 (but maybe not TLS 1.3) sup-
ports the session resumption. Here, 
rather than sending an empty ses-
sion ID in the client hello, the client 
sends the session ID of the session to 
be resumed. The server responds with 
server hello, change cipher spec, and 
server finished messages. The client 
then responds with change cipher 
spec and client finished messages.

Finally, either clients or servers can 
initiate a renegotiation of the cipher 
suites. When the server initiates them, it 
sends a hello request message to the cli-
ent that in turn triggers the client to ini-
tiate a new handshake. Clients can also 
initiate a renegotiation at any time sim-
ply by sending a client hello message.

Time to Make the Donuts
TLS likely got its name from the record 
protocol because it’s the bit of the pro-
tocol that performs the transport-like 
functions — namely, it handles frag-
menting, transmission, receiving, and 
defragmenting. Depending on the algo-
rithms negotiated during the handshake, 
application data can be compressed, 
MACed, and encrypted before transmis-
sion and subsequently received, decom-
pressed, verified, and decrypted.

Wait, You Mean It Doesn’t 
Do That?
The not-so-subtle point from the pre-
vious paragraphs is that TLS can be 
configured to operate as securely as 
possible or in some horrifically bro-
ken way. It’s up to administrators to 
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ensure that their servers are config-
ured properly. Also, cryptographic 
algorithms weaken over time, so it’s a 
good idea to check the server’s config-
uration file to make sure that strong 
ciphers are preferred over weak ones.

TLS isn’t going to automatically 
update itself if an implementation bug 
such as the now famous heartbleed 
bug is discovered. Deploying updated 
software or disabling insecure options, 
my friends, is up to server adminis-
trators and those that control their 
budgets.

TLS is a two-party protocol. Clients 
are only assured of end-to-end security 
when the server is the TLS session end-
point, and the application data resides 
on said server. If the data resides else-
where, then even with TLS sessions 
between the servers, the data isn’t truly 
protected from end to end. There have 
also been numerous attempts to intro-
duce another party into the protocol. 
What they’re called depends on your 
viewpoint: proxies or men in the middle.

TLS relies on a reliable transport 
protocol — mostly TCP. Datagram 
Transport Layer Security (DTLS)16 is 
used with unreliable transports such 
as UDP.

S ome have said TLS’s time has come 
and gone, and that it’s time to move 

to an entirely new protocol. Not every-
one agrees with this sentiment. The 
TLS WG is actively working on TLS 1.3 
with the following goals in mind:

•	 Encrypt as much of the handshake 
as possible to reduce the amount 
of observable data to both passive 
and active attackers.

•	 Reduce handshake latency to pri-
marily support HTTP-based applica-
tions with the aim of one roundtrip 
(1-RTT) for a full handshake and 
one or zero roundtrips (0-RTT) for 
repeated handshakes.

•	 Update payload protection crypto-
graphic mechanisms and algorithms 
to address known weaknesses in 

the CBC block cipher modes and to 
replace RC4.

•	 Reevaluate handshake content.

Some of the major decisions made to 
date would do the following:

•	 Remove support for compression. 
The application handles this better, 
and it’s been the source of numer-
ous well-known attacks (such as 
Beast and Crime).

•	 Remove support for static RSA and 
DH static key exchange. These types 
of ciphers don’t support perfect for-
ward secrecy (PFS).

•	 Remove support for non-AEAD 
ciphers.

•	 Move EC algorithms to the standards 
track. Still to be decided is whether 
an EC-based algorithm will be the 
mandatory-to-implement algorithm.

Work is ongoing, so if you’re inter-
ested and have some constructive crit-
icism, please come and get involved 
(see http://datatracker.ietf.org/wg/tls/
documents). 

References
1. J. Postel and J. Reynolds, Telnet Protocol 

Specification, IETF RFC 854, May 1983; 

https://datatracker.ietf.org/doc/rfc854/.

2. J. Postel and J. Reynolds, File Transfer 

Protocol (FTP), IETF RFC 959, Oct. 1995; 

http://datatracker.ietf.org/doc/rfc959/.

3. F. Anklesaria et al., The Internet Gopher Pro-

tocol: A Distributed Document Search and 

Retrieval Protocol, IETF RFC 1436, Mar. 1993; 

https://datatracker.ietf.org/doc/rfc1436/.

4. S. Kent and K. Seo, Security Architecture 

for the Internet Protocol, IETF RFC 4301, 

Dec. 2005; https://datatracker.ietf.org/doc/

rfc4301/.

5. J. Benaloh et al., The Private Communi-

cation Technology Protocol, IETF Internet 

draft, work in progress, Oct. 1995.

6. K. Hickman, The SSL Protocol, IETF Inter-

net draft, work in progress, Apr. 1995.

7. S. Turner and T. Polk, Prohibiting Secure 

Sockets Layer (SSL) Version 2.0, IETF RFC 

6176, Mar. 2011; https://datatracker.ietf.

org/doc/rfc6176/.

8. A. Freier, P. Karlton, and P. Cocher, The 

Secure Sockets Layer (SSL) Protocol Ver-

sion 3.0, IETF RFC 6101, Aug. 2011; https://

datatracker.ietf.org/doc/rfc6101/.

9. D. Eastlake, Transport Layer Security (TLS) 

Extensions: Extension Definitions, IETF 

RFC 6066, Jan. 2011; https://datatracker.

ietf.org/doc/rfc6066/.

10. Y. Pettersen, The Transport Layer Security 

(TLS) Multiple Certificate Status Request 

Extension, IETF RFC 6961, June 2013; https://

datatracker.ietf.org/doc/rfc6961/.

11. N. Mavrogiannopoulos and D.K Gillmor, 

Using OpenPGP Keys for Transport Layer 

Security (TLS) Authentication, IETF RFC 

6091, Feb. 2011; https://datatracker.ietf.org/

doc/rfc6091/.

12. P. Wouters et al., Using Raw Public Keys in 

Transport Layer Security (TLS) and Data-

gram Transport Layer Security (DTLS), IETF 

RFC 7250, June 2014; https://datatracker.

ietf.org/doc/rfc7250/.

13. P. Eronen and H. Tschofenig, Pre-Shared 

Key Ciphersuites for Transport Layer Secu-

rity (TLS), IETF RFC 4279, Dec. 2005; https://

datatracker.ietf.org/doc/rfc4279/.

14. D. Taylor et al., Using the Secure Remote 

Password (SRP) Protocol for TLS Authenti-

cation, IETF RFC 5054; Nov. 2007; https://

datatracker.ietf.org/doc/rfc5054/.

15. S. Blake-Wilson et al., Elliptic Curve Cryptog-

raphy (ECC) Cipher Suites for Transport Layer 

Security (TLS), IETF RFC 4492, May 2006; 

https://datatracker.ietf.org/doc/rfc4492/.

16. E. Rescorla and N. Modadugu, Datagram 

Transport Layer Security Version 1.2, IETF 

RFC 6347, Jan. 2012; https://datatracker.

ietf.org/doc/rfc6347/.

Sean Turner is founder and principal engi-

neer at IECA. He received a BEE from the 

Georgia Institute of Technology. Turner is 

a long-time member of IEEE, active in the 

IETF, and coauthor of Implementing Email 

and Security Tokens: Current Standards, 

Tools, and Practices (Wiley, 2008). Contact 

him at turners@ieca.com.

Selected CS articles and columns 
are also available for free at http:// 

ComputingNow.computer.org.


